Amazon Athena vs Elasticsearch

Need advice about which tool to choose?Ask the StackShare community!

Amazon Athena

459
783
+ 1
47
Elasticsearch

31.4K
24.7K
+ 1
1.6K
Add tool
Advice on Amazon Athena and Elasticsearch
Rana Usman Shahid
Chief Technology Officer at TechAvanza · | 6 upvotes · 307.9K views
Needs advice
on
AlgoliaAlgoliaElasticsearchElasticsearch
and
FirebaseFirebase

Hey everybody! (1) I am developing an android application. I have data of around 3 million record (less than a TB). I want to save that data in the cloud. Which company provides the best cloud database services that would suit my scenario? It should be secured, long term useable, and provide better services. I decided to use Firebase Realtime database. Should I stick with Firebase or are there any other companies that provide a better service?

(2) I have the functionality of searching data in my app. Same data (less than a TB). Which search solution should I use in this case? I found Elasticsearch and Algolia search. It should be secure and fast. If any other company provides better services than these, please feel free to suggest them.

Thank you!

See more
Replies (2)
Josh Dzielak
Co-Founder & CTO at Orbit · | 8 upvotes · 224.2K views
Recommends
on
AlgoliaAlgolia

Hi Rana, good question! From my Firebase experience, 3 million records is not too big at all, as long as the cost is within reason for you. With Firebase you will be able to access the data from anywhere, including an android app, and implement fine-grained security with JSON rules. The real-time-ness works perfectly. As a fully managed database, Firebase really takes care of everything. The only thing to watch out for is if you need complex query patterns - Firestore (also in the Firebase family) can be a better fit there.

To answer question 2: the right answer will depend on what's most important to you. Algolia is like Firebase is that it is fully-managed, very easy to set up, and has great SDKs for Android. Algolia is really a full-stack search solution in this case, and it is easy to connect with your Firebase data. Bear in mind that Algolia does cost money, so you'll want to make sure the cost is okay for you, but you will save a lot of engineering time and never have to worry about scale. The search-as-you-type performance with Algolia is flawless, as that is a primary aspect of its design. Elasticsearch can store tons of data and has all the flexibility, is hosted for cheap by many cloud services, and has many users. If you haven't done a lot with search before, the learning curve is higher than Algolia for getting the results ranked properly, and there is another learning curve if you want to do the DevOps part yourself. Both are very good platforms for search, Algolia shines when buliding your app is the most important and you don't want to spend many engineering hours, Elasticsearch shines when you have a lot of data and don't mind learning how to run and optimize it.

See more
Mike Endale
Recommends
on
Cloud FirestoreCloud Firestore

Rana - we use Cloud Firestore at our startup. It handles many million records without any issues. It provides you the same set of features that the Firebase Realtime Database provides on top of the indexing and security trims. The only thing to watch out for is to make sure your Cloud Functions have proper exception handling and there are no infinite loop in the code. This will be too costly if not caught quickly.

For search; Algolia is a great option, but cost is a real consideration. Indexing large number of records can be cost prohibitive for most projects. Elasticsearch is a solid alternative, but requires a little additional work to configure and maintain if you want to self-host.

Hope this helps.

See more

Hi all,

Currently, we need to ingest the data from Amazon S3 to DB either Amazon Athena or Amazon Redshift. But the problem with the data is, it is in .PSV (pipe separated values) format and the size is also above 200 GB. The query performance of the timeout in Athena/Redshift is not up to the mark, too slow while compared to Google BigQuery. How would I optimize the performance and query result time? Can anyone please help me out?

See more
Replies (4)

you can use aws glue service to convert you pipe format data to parquet format , and thus you can achieve data compression . Now you should choose Redshift to copy your data as it is very huge. To manage your data, you should partition your data in S3 bucket and also divide your data across the redshift cluster

See more
Carlos Acedo
Data Technologies Manager at SDG Group Iberia · | 5 upvotes · 186.6K views
Recommends
on
Amazon RedshiftAmazon Redshift

First of all you should make your choice upon Redshift or Athena based on your use case since they are two very diferent services - Redshift is an enterprise-grade MPP Data Warehouse while Athena is a SQL layer on top of S3 with limited performance. If performance is a key factor, users are going to execute unpredictable queries and direct and managing costs are not a problem I'd definitely go for Redshift. If performance is not so critical and queries will be predictable somewhat I'd go for Athena.

Once you select the technology you'll need to optimize your data in order to get the queries executed as fast as possible. In both cases you may need to adapt the data model to fit your queries better. In the case you go for Athena you'd also proabably need to change your file format to Parquet or Avro and review your partition strategy depending on your most frequent type of query. If you choose Redshift you'll need to ingest the data from your files into it and maybe carry out some tuning tasks for performance gain.

I'll recommend Redshift for now since it can address a wider range of use cases, but we could give you better advice if you described your use case in depth.

See more
Alexis Blandin
Recommends
on
Amazon AthenaAmazon Athena

It depend of the nature of your data (structured or not?) and of course your queries (ad-hoc or predictible?). For example you can look at partitioning and columnar format to maximize MPP capabilities for both Athena and Redshift

See more
Recommends

you can change your PSV fomat data to parquet file format with AWS GLUE and then your query performance will be improved

See more
Get Advice from developers at your company using StackShare Enterprise. Sign up for StackShare Enterprise.
Learn More
Pros of Amazon Athena
Pros of Elasticsearch
  • 15
    Use SQL to analyze CSV files
  • 8
    Glue crawlers gives easy Data catalogue
  • 7
    Cheap
  • 5
    Query all my data without running servers 24x7
  • 4
    No data base servers yay
  • 3
    Easy integration with QuickSight
  • 2
    Query and analyse CSV,parquet,json files in sql
  • 2
    Also glue and athena use same data catalog
  • 1
    No configuration required
  • 0
    Ad hoc checks on data made easy
  • 324
    Powerful api
  • 315
    Great search engine
  • 230
    Open source
  • 214
    Restful
  • 199
    Near real-time search
  • 96
    Free
  • 83
    Search everything
  • 54
    Easy to get started
  • 45
    Analytics
  • 26
    Distributed
  • 6
    Fast search
  • 5
    More than a search engine
  • 3
    Awesome, great tool
  • 3
    Highly Available
  • 3
    Great docs
  • 3
    Easy to scale
  • 2
    Fast
  • 2
    Easy setup
  • 2
    Great customer support
  • 2
    Intuitive API
  • 2
    Great piece of software
  • 2
    Reliable
  • 2
    Potato
  • 2
    Nosql DB
  • 2
    Document Store
  • 1
    Not stable
  • 1
    Scalability
  • 1
    Open
  • 1
    Github
  • 1
    Elaticsearch
  • 1
    Actively developing
  • 1
    Responsive maintainers on GitHub
  • 1
    Ecosystem
  • 1
    Easy to get hot data
  • 0
    Community

Sign up to add or upvote prosMake informed product decisions

Cons of Amazon Athena
Cons of Elasticsearch
    Be the first to leave a con
    • 7
      Resource hungry
    • 6
      Diffecult to get started
    • 5
      Expensive
    • 4
      Hard to keep stable at large scale

    Sign up to add or upvote consMake informed product decisions

    What is Amazon Athena?

    Amazon Athena is an interactive query service that makes it easy to analyze data in Amazon S3 using standard SQL. Athena is serverless, so there is no infrastructure to manage, and you pay only for the queries that you run.

    What is Elasticsearch?

    Elasticsearch is a distributed, RESTful search and analytics engine capable of storing data and searching it in near real time. Elasticsearch, Kibana, Beats and Logstash are the Elastic Stack (sometimes called the ELK Stack).

    Need advice about which tool to choose?Ask the StackShare community!

    What companies use Amazon Athena?
    What companies use Elasticsearch?
    See which teams inside your own company are using Amazon Athena or Elasticsearch.
    Sign up for StackShare EnterpriseLearn More

    Sign up to get full access to all the companiesMake informed product decisions

    What tools integrate with Amazon Athena?
    What tools integrate with Elasticsearch?

    Sign up to get full access to all the tool integrationsMake informed product decisions

    Blog Posts

    Aug 28 2019 at 3:10AM

    Segment

    PythonJavaAmazon S3+16
    7
    2412
    Jul 2 2019 at 9:34PM

    Segment

    Google AnalyticsAmazon S3New Relic+25
    10
    6517
    May 21 2019 at 12:20AM

    Elastic

    ElasticsearchKibanaLogstash+4
    12
    4619
    GitHubPythonReact+42
    48
    40283
    What are some alternatives to Amazon Athena and Elasticsearch?
    Presto
    Distributed SQL Query Engine for Big Data
    Amazon Redshift Spectrum
    With Redshift Spectrum, you can extend the analytic power of Amazon Redshift beyond data stored on local disks in your data warehouse to query vast amounts of unstructured data in your Amazon S3 “data lake” -- without having to load or transform any data.
    Amazon Redshift
    It is optimized for data sets ranging from a few hundred gigabytes to a petabyte or more and costs less than $1,000 per terabyte per year, a tenth the cost of most traditional data warehousing solutions.
    Cassandra
    Partitioning means that Cassandra can distribute your data across multiple machines in an application-transparent matter. Cassandra will automatically repartition as machines are added and removed from the cluster. Row store means that like relational databases, Cassandra organizes data by rows and columns. The Cassandra Query Language (CQL) is a close relative of SQL.
    Spectrum
    The community platform for the future.
    See all alternatives