StackShareStackShare
Follow on
StackShare

Discover and share technology stacks from companies around the world.

Follow on

© 2025 StackShare. All rights reserved.

Product

  • Stacks
  • Tools
  • Feed

Company

  • About
  • Contact

Legal

  • Privacy Policy
  • Terms of Service
  1. Stackups
  2. Utilities
  3. Search
  4. Search As A Service
  5. Amazon CloudSearch vs Amazon Kinesis

Amazon CloudSearch vs Amazon Kinesis

OverviewDecisionsComparisonAlternatives

Overview

Amazon CloudSearch
Amazon CloudSearch
Stacks130
Followers152
Votes27
Amazon Kinesis
Amazon Kinesis
Stacks796
Followers604
Votes9

Amazon CloudSearch vs Amazon Kinesis: What are the differences?

Amazon CloudSearch: Set up, manage, and scale a search solution for your website or application. Amazon CloudSearch enables you to search large collections of data such as web pages, document files, forum posts, or product information. With a few clicks in the AWS Management Console, you can create a search domain, upload the data you want to make searchable to Amazon CloudSearch, and the search service automatically provisions the required technology resources and deploys a highly tuned search index; Amazon Kinesis: Store and process terabytes of data each hour from hundreds of thousands of sources. Amazon Kinesis can collect and process hundreds of gigabytes of data per second from hundreds of thousands of sources, allowing you to easily write applications that process information in real-time, from sources such as web site click-streams, marketing and financial information, manufacturing instrumentation and social media, and operational logs and metering data.

Amazon CloudSearch and Amazon Kinesis are primarily classified as "Search as a Service" and "Real-time Data Processing" tools respectively.

Some of the features offered by Amazon CloudSearch are:

  • Simple to Configure – You can make your data searchable using the AWS Management Console, API calls, or command line tools. Simply point to a sample set of data, and Amazon CloudSearch automatically proposes a list of index fields and a suggested configuration.
  • Automatic Scaling For Data &amp
  • Traffic – Amazon CloudSearch scales up and down seamlessly as the amount of data or query volume changes.

On the other hand, Amazon Kinesis provides the following key features:

  • Real-time Processing- Amazon Kinesis enables you to collect and analyze information in real-time, allowing you to answer questions about the current state of your data, from inventory levels to stock trade frequencies, rather than having to wait for an out-of-date report.
  • Easy to use- You can create a new stream, set the throughput requirements, and start streaming data quickly and easily. Amazon Kinesis automatically provisions and manages the storage required to reliably and durably collect your data stream.
  • High throughput. Elastic.- Amazon Kinesis seamlessly scales to match the data throughput rate and volume of your data, from megabytes to terabytes per hour. Amazon Kinesis will scale up or down based on your needs.

Instacart, Lyft, and Zillow are some of the popular companies that use Amazon Kinesis, whereas Amazon CloudSearch is used by Zola, AgoraPulse, and Publitas. Amazon Kinesis has a broader approval, being mentioned in 132 company stacks & 25 developers stacks; compared to Amazon CloudSearch, which is listed in 16 company stacks and 6 developer stacks.

Share your Stack

Help developers discover the tools you use. Get visibility for your team's tech choices and contribute to the community's knowledge.

View Docs
CLI (Node.js)
or
Manual

Advice on Amazon CloudSearch, Amazon Kinesis

Ryan
Ryan

Mar 11, 2021

Decided

Because we're getting continuous data from a variety of mediums and sources, we need a way to ingest data, process it, analyze it, and store it in a robust manner. AWS' tools provide just that. They make it easy to set up a data ingestion pipeline for handling gigabytes of data per second. GraphQL makes it easy for the front end to just query an API and get results in an efficient fashion, getting only the data we need. SwaggerHub makes it easy to make standardized OpenAPI's with consistent and predictable behavior.

23k views23k
Comments
Roel
Roel

Lead Developer at Di-Vision Consultion

Dec 14, 2020

Decided

Use case for ingressing a lot of data and post-process the data and forward it to multiple endpoints.

Kinesis can ingress a lot of data easier without have to manage scaling in DynamoDB (ondemand would be too expensive) We looked at DynamoDB Streams to hook up with Lambda, but Kinesis provides the same, and a backup incoming data to S3 with Firehose instead of using the TTL in DynamoDB.

21k views21k
Comments

Detailed Comparison

Amazon CloudSearch
Amazon CloudSearch
Amazon Kinesis
Amazon Kinesis

Amazon CloudSearch enables you to search large collections of data such as web pages, document files, forum posts, or product information. With a few clicks in the AWS Management Console, you can create a search domain, upload the data you want to make searchable to Amazon CloudSearch, and the search service automatically provisions the required technology resources and deploys a highly tuned search index.

Amazon Kinesis can collect and process hundreds of gigabytes of data per second from hundreds of thousands of sources, allowing you to easily write applications that process information in real-time, from sources such as web site click-streams, marketing and financial information, manufacturing instrumentation and social media, and operational logs and metering data.

Simple to Configure – You can make your data searchable using the AWS Management Console, API calls, or command line tools. Simply point to a sample set of data, and Amazon CloudSearch automatically proposes a list of index fields and a suggested configuration.;Automatic Scaling For Data & Traffic – Amazon CloudSearch scales up and down seamlessly as the amount of data or query volume changes.;Low Latency, High Throughput – Amazon CloudSearch always stores your index in RAM to ensure low latency and high throughput performance even at large scale. Amazon CloudSearch was created from the same A9 technology that powers search on Amazon.com.;Rich Search Features – Amazon CloudSearch indexes and searches both structured data and plain text. It includes most search features that developers have come to expect from a search engine, such as faceted search, free text search, Boolean search, customizable relevance ranking, query time rank expressions, field weighting, and sorting of results using any field. Amazon CloudSearch also provides near real-time indexing of document updates.;Secure – Amazon CloudSearch uses strong cryptographic methods to authenticate users and prevent unauthorized control of your domains. Amazon CloudSearch supports HTTPS and includes web service interfaces to configure firewall settings that control network access to your domain.
Real-time Processing- Amazon Kinesis enables you to collect and analyze information in real-time, allowing you to answer questions about the current state of your data, from inventory levels to stock trade frequencies, rather than having to wait for an out-of-date report;Easy to use- You can create a new stream, set the throughput requirements, and start streaming data quickly and easily. Amazon Kinesis automatically provisions and manages the storage required to reliably and durably collect your data stream;High throughput. Elastic.- Amazon Kinesis seamlessly scales to match the data throughput rate and volume of your data, from megabytes to terabytes per hour. Amazon Kinesis will scale up or down based on your needs;Integrate with Amazon S3, Amazon Redshift, and Amazon DynamoDB- With Amazon Kinesis, you can reliably collect, process, and transform all of your data in real-time before delivering it to data stores of your choice, where it can be used by existing or new applications. Connectors enable integration with Amazon S3, Amazon Redshift, and Amazon DynamoDB;Build Kinesis Applications- Amazon Kinesis provides developers with client libraries that enable the design and operation of real-time data processing applications. Just add the Amazon Kinesis Client Library to your Java application and it will be notified when new data is available for processing;Low Cost- Amazon Kinesis is cost-efficient for workloads of any scale. You can pay as you go, and you’ll only pay for the resources you use. You can get started by provisioning low throughput streams, and only pay a low hourly rate for the throughput you need
Statistics
Stacks
130
Stacks
796
Followers
152
Followers
604
Votes
27
Votes
9
Pros & Cons
Pros
  • 12
    Managed
  • 7
    Auto-Scaling
  • 5
    Compound Queries
  • 3
    Easy Setup
Pros
  • 9
    Scalable
Cons
  • 3
    Cost

What are some alternatives to Amazon CloudSearch, Amazon Kinesis?

Elasticsearch

Elasticsearch

Elasticsearch is a distributed, RESTful search and analytics engine capable of storing data and searching it in near real time. Elasticsearch, Kibana, Beats and Logstash are the Elastic Stack (sometimes called the ELK Stack).

Algolia

Algolia

Our mission is to make you a search expert. Push data to our API to make it searchable in real time. Build your dream front end with one of our web or mobile UI libraries. Tune relevance and get analytics right from your dashboard.

Typesense

Typesense

It is an open source, typo tolerant search engine that delivers fast and relevant results out-of-the-box. has been built from scratch to offer a delightful, out-of-the-box search experience. From instant search to autosuggest, to faceted search, it has got you covered.

Amazon Elasticsearch Service

Amazon Elasticsearch Service

Amazon Elasticsearch Service is a fully managed service that makes it easy for you to deploy, secure, and operate Elasticsearch at scale with zero down time.

Manticore Search

Manticore Search

It is a full-text search engine written in C++ and a fork of Sphinx Search. It's designed to be simple to use, light and fast, while allowing advanced full-text searching. Connectivity is provided via a MySQL compatible protocol or HTTP, making it easy to integrate.

Google Cloud Dataflow

Google Cloud Dataflow

Google Cloud Dataflow is a unified programming model and a managed service for developing and executing a wide range of data processing patterns including ETL, batch computation, and continuous computation. Cloud Dataflow frees you from operational tasks like resource management and performance optimization.

Azure Search

Azure Search

Azure Search makes it easy to add powerful and sophisticated search capabilities to your website or application. Quickly and easily tune search results and construct rich, fine-tuned ranking models to tie search results to business goals. Reliable throughput and storage provide fast search indexing and querying to support time-sensitive search scenarios.

Swiftype

Swiftype

Swiftype is the easiest way to add great search to your website or mobile application.

MeiliSearch

MeiliSearch

It is a powerful, fast, open-source, easy to use, and deploy search engine. The search and indexation are fully customizable and handles features like typo-tolerance, filters, and synonyms.

Quickwit

Quickwit

It is the next-gen search & analytics engine built for logs. It is designed from the ground up to offer cost-efficiency and high reliability on large data sets. Its benefits are most apparent in multi-tenancy or multi-index settings.

Related Comparisons

Postman
Swagger UI

Postman vs Swagger UI

Mapbox
Google Maps

Google Maps vs Mapbox

Mapbox
Leaflet

Leaflet vs Mapbox vs OpenLayers

Twilio SendGrid
Mailgun

Mailgun vs Mandrill vs SendGrid

Runscope
Postman

Paw vs Postman vs Runscope