Amazon Elastic Inference allows you to attach low-cost GPU-powered acceleration to Amazon EC2 and Amazon SageMaker instances to reduce the cost of running deep learning inference by up to 75%. Amazon Elastic Inference supports TensorFlow, Apache MXNet, and ONNX models, with more frameworks coming soon. | It is a fully-managed, cloud native feature platform that operates and manages the pipelines that transform raw data into features across the full lifecycle of an ML application. |
| - | Feature Pipelines - automatically compute and orchestrate the feature transformation process with unified batch and real-time abstractions. Tecton includes efficient pre-engineered pipelines that compute windowed aggregations on batch and real-time data with a single line of code;
Feature Store - store features in an offline store to optimize for large-scale retrieval during training and an online store for low-latency retrieval during online serving. Easily generate accurate training data through a Python SDK and backfill feature data. Serve data at very high scale (over 100,000 QPS) and low latency (under 100ms) through a REST endpoint. Tecton eliminates train-serve skew by ensuring consistency across training and serving environments, and also eliminates data leakage through correct time-travel;
Feature Repository - Manage features as files in a git repository using a declarative framework. Deploy features with confidence by integrating CI/CD processes and unit testing your features before deploying to production. Manage dependencies of features across models and version-control features;
Monitoring - Monitor the health of feature pipelines and automatically resolve issues that could produce stale feature data. Control costs by tracking the computation and storage costs for each feature;
Sharing - Discover features through an intuitive Web UI and produce new production-grade models with existing features with a single line of code. Break down silos, increase collaboration between data scientists, data engineers, and application engineers. Eliminate duplication across the ML data development cycle |
Statistics | |
Stacks 45 | Stacks 1 |
Followers 56 | Followers 1 |
Votes 0 | Votes 0 |
Integrations | |

Build a custom machine learning model without expertise or large amount of data. Just go to nanonets, upload images, wait for few minutes and integrate nanonets API to your application.

It is the easiest way to deploy Machine Learning models. Start deploying Tensorflow, Scikit, Keras and spaCy straight from your notebook with just one extra line.

Building an intelligent, predictive application involves iterating over multiple steps: cleaning the data, developing features, training a model, and creating and maintaining a predictive service. GraphLab Create does all of this in one platform. It is easy to use, fast, and powerful.

BigML provides a hosted machine learning platform for advanced analytics. Through BigML's intuitive interface and/or its open API and bindings in several languages, analysts, data scientists and developers alike can quickly build fully actionable predictive models and clusters that can easily be incorporated into related applications and services.

Explore SAM 3D to reconstruct 3D objects, people and scenes from a single image. Build 3D assets faster with SAM 3D Objects and SAM 3D Body.

AI-powered sports analytics and skill assessment API that enables apps and platforms to deliver personalized training, drills, and performance insights.

Create AI videos at 60¢ each - 50% cheaper than Veo3, faster than HeyGen. Get 200 free credits, no subscription required. PayPal supported. Start in under 2 minutes.

Is a training API for researchers and developers.

Help artist transform pet photos into stunning artwork in seconds. Create royal portraits, oil paintings, cartoon styles & more. No prompts needed, just upload and generate beautiful AI pet portraits.

A fully-managed service that enables developers and data scientists to quickly and easily build, train, and deploy machine learning models at any scale.