StackShareStackShare
Follow on
StackShare

Discover and share technology stacks from companies around the world.

Follow on

© 2025 StackShare. All rights reserved.

Product

  • Stacks
  • Tools
  • Feed

Company

  • About
  • Contact

Legal

  • Privacy Policy
  • Terms of Service
  1. Stackups
  2. AI
  3. Development & Training Tools
  4. Machine Learning Tools
  5. AutoMLPipeline vs Datatron

AutoMLPipeline vs Datatron

OverviewComparisonAlternatives

Overview

Datatron
Datatron
Stacks0
Followers10
Votes0
AutoMLPipeline
AutoMLPipeline
Stacks0
Followers7
Votes0
GitHub Stars368
Forks28

AutoMLPipeline vs Datatron: What are the differences?

What is AutoMLPipeline? A package that makes it trivial to create and evaluate machine learning pipeline architectures (by IBM). It is a package that makes it trivial to create complex ML pipeline structures using simple expressions. It leverages on the built-in macro programming features of Julia to symbolically process, manipulate pipeline expressions, and automatically discover optimal structures for machine learning prediction and classification.

What is Datatron? Production AI Model Management at Scale. Automate the standardized deployment, monitoring, governance, and validation of all your models to be developed in any environment.

AutoMLPipeline and Datatron belong to "Machine Learning Tools" category of the tech stack.

Some of the features offered by AutoMLPipeline are:

  • Pipeline API that allows high-level description of processing workflow
  • Common API wrappers for ML libs including Scikitlearn, DecisionTree, etc
  • Symbolic pipeline parsing for easy expression of complexed pipeline structures

On the other hand, Datatron provides the following key features:

  • Explore models built and uploaded by your Data Science team, all from one centralized repository
  • Create and scale model deployments in just a few clicks. Deploy models developed in any framework or language
  • Make better business decisions to save your team time and money. Monitor model performance and detect model decay as it happens

Share your Stack

Help developers discover the tools you use. Get visibility for your team's tech choices and contribute to the community's knowledge.

View Docs
CLI (Node.js)
or
Manual

Detailed Comparison

Datatron
Datatron
AutoMLPipeline
AutoMLPipeline

Automate the standardized deployment, monitoring, governance, and validation of all your models to be developed in any environment.

It is a package that makes it trivial to create complex ML pipeline structures using simple expressions. It leverages on the built-in macro programming features of Julia to symbolically process, manipulate pipeline expressions, and automatically discover optimal structures for machine learning prediction and classification.

Explore models built and uploaded by your Data Science team, all from one centralized repository; Create and scale model deployments in just a few clicks. Deploy models developed in any framework or language; Make better business decisions to save your team time and money. Monitor model performance and detect model decay as it happens; Spend less time on model validation, bias detection, and internal audit processes. Go from model development to internal auditing to production faster than ever; Manage multivariate models through A/B testing for live inference and batch tasks; Apply business logic to your model prediction results. Create workflows for your models using multiple sources and languages
Pipeline API that allows high-level description of processing workflow; Common API wrappers for ML libs including Scikitlearn, DecisionTree, etc; Symbolic pipeline parsing for easy expression of complexed pipeline structures; Easily extensible architecture by overloading just two main interfaces: fit! and transform!; Meta-ensembles that allow composition of ensembles of ensembles (recursively if needed) for robust prediction routines; Categorical and numerical feature selectors for specialized preprocessing routines based on types
Statistics
GitHub Stars
-
GitHub Stars
368
GitHub Forks
-
GitHub Forks
28
Stacks
0
Stacks
0
Followers
10
Followers
7
Votes
0
Votes
0
Integrations
TensorFlow
TensorFlow
scikit-learn
scikit-learn
H2O
H2O
scikit-learn
scikit-learn

What are some alternatives to Datatron, AutoMLPipeline?

Heroku

Heroku

Heroku is a cloud application platform – a new way of building and deploying web apps. Heroku lets app developers spend 100% of their time on their application code, not managing servers, deployment, ongoing operations, or scaling.

Clever Cloud

Clever Cloud

Clever Cloud is a polyglot cloud application platform. The service helps developers to build applications with many languages and services, with auto-scaling features and a true pay-as-you-go pricing model.

Google App Engine

Google App Engine

Google has a reputation for highly reliable, high performance infrastructure. With App Engine you can take advantage of the 10 years of knowledge Google has in running massively scalable, performance driven systems. App Engine applications are easy to build, easy to maintain, and easy to scale as your traffic and data storage needs grow.

Red Hat OpenShift

Red Hat OpenShift

OpenShift is Red Hat's Cloud Computing Platform as a Service (PaaS) offering. OpenShift is an application platform in the cloud where application developers and teams can build, test, deploy, and run their applications.

AWS Elastic Beanstalk

AWS Elastic Beanstalk

Once you upload your application, Elastic Beanstalk automatically handles the deployment details of capacity provisioning, load balancing, auto-scaling, and application health monitoring.

Render

Render

Render is a unified platform to build and run all your apps and websites with free SSL, a global CDN, private networks and auto deploys from Git.

Hasura

Hasura

An open source GraphQL engine that deploys instant, realtime GraphQL APIs on any Postgres database.

TensorFlow

TensorFlow

TensorFlow is an open source software library for numerical computation using data flow graphs. Nodes in the graph represent mathematical operations, while the graph edges represent the multidimensional data arrays (tensors) communicated between them. The flexible architecture allows you to deploy computation to one or more CPUs or GPUs in a desktop, server, or mobile device with a single API.

Cloud 66

Cloud 66

Cloud 66 gives you everything you need to build, deploy and maintain your applications on any cloud, without the headache of dealing with "server stuff". Frameworks: Ruby on Rails, Node.js, Jamstack, Laravel, GoLang, and more.

Jelastic

Jelastic

Jelastic is a Multi-Cloud DevOps PaaS for ISVs, telcos, service providers and enterprises needing to speed up development, reduce cost of IT infrastructure, improve uptime and security.

Related Comparisons

Postman
Swagger UI

Postman vs Swagger UI

Mapbox
Google Maps

Google Maps vs Mapbox

Mapbox
Leaflet

Leaflet vs Mapbox vs OpenLayers

Twilio SendGrid
Mailgun

Mailgun vs Mandrill vs SendGrid

Runscope
Postman

Paw vs Postman vs Runscope