StackShareStackShare
Follow on
StackShare

Discover and share technology stacks from companies around the world.

Follow on

© 2025 StackShare. All rights reserved.

Product

  • Stacks
  • Tools
  • Feed

Company

  • About
  • Contact

Legal

  • Privacy Policy
  • Terms of Service
  1. Stackups
  2. Application & Data
  3. Databases
  4. Databases
  5. Couchbase vs Memcached

Couchbase vs Memcached

OverviewDecisionsComparisonAlternatives

Overview

Memcached
Memcached
Stacks7.9K
Followers5.7K
Votes473
GitHub Stars14.0K
Forks3.3K
Couchbase
Couchbase
Stacks505
Followers606
Votes110

Couchbase vs Memcached: What are the differences?

Key Differences between Couchbase and Memcached

Couchbase and Memcached are both in-memory data management systems but have a few key differences that set them apart.

  1. Data Persistence: Couchbase provides data persistence with its built-in storage engine, while Memcached does not have native persistence capabilities. This means that when the server is restarted, Couchbase retains the data, whereas Memcached must reload data from an external source, like a database.

  2. Query Language and Indexing: Couchbase offers a querying language called N1QL (SQL for JSON), which allows for flexible querying and indexing of data. On the other hand, Memcached does not support query capabilities, requiring developers to retrieve data by using explicit keys.

  3. Data Replication and High Availability: While both Couchbase and Memcached support high availability, Couchbase provides built-in data replication features, allowing automatic synchronization and failover across multiple nodes. Memcached, however, relies on external tools or custom implementations to achieve the same level of data replication and high availability.

  4. Scalability: Couchbase supports horizontal scaling, allowing for the addition of more nodes as data grows. It uses a distributed architecture to ensure data is evenly distributed across nodes for improved performance and capacity. In comparison, Memcached does not offer built-in support for horizontal scaling, limiting the ability to handle larger data sets or increased traffic.

  5. Flexible Data Model: Couchbase embraces a document data model, storing data in JSON format, which allows for complex structures and supports schema flexibility. In contrast, Memcached is designed to store simple key-value pairs, providing a more limited data model in terms of data structure and schema flexibility.

  6. Integration Ecosystem: Couchbase provides a comprehensive integration ecosystem with connectors and support for various programming languages, frameworks, and integrations with other technologies. Memcached, while widely adopted, has a more limited integration ecosystem compared to Couchbase.

In Summary, Couchbase offers advanced features such as data persistence, query language, data replication, and scalability, making it suitable for more complex and demanding use cases. Memcached, on the other hand, excels in simplicity, cache performance, and ease of use, making it a popular choice for straightforward key-value caching scenarios.

Share your Stack

Help developers discover the tools you use. Get visibility for your team's tech choices and contribute to the community's knowledge.

View Docs
CLI (Node.js)
or
Manual

Advice on Memcached, Couchbase

Gabriel
Gabriel

CEO at Naologic

Nov 2, 2020

Decided

After using couchbase for over 4 years, we migrated to MongoDB and that was the best decision ever! I'm very disappointed with Couchbase's technical performance. Even though we received enterprise support and were a listed Couchbase Partner, the experience was horrible. With every contact, the sales team was trying to get me on a $7k+ license for access to features all other open source NoSQL databases get for free.

Here's why you should not use Couchbase

Full-text search Queries The full-text search often returns a different number of results if you run the same query multiple types

N1QL queries Configuring the indexes correctly is next to impossible. It's poorly documented and nobody seems to know what to do, even the Couchbase support engineers have no clue what they are doing.

Community support I posted several problems on the forum and I never once received a useful answer

Enterprise support It's very expensive. $7k+. The team constantly tried to get me to buy even though the community edition wasn't working great

Autonomous Operator It's actually just a poorly configured Kubernetes role that no matter what I did, I couldn't get it to work. The support team was useless. Same lack of documentation. If you do get it to work, you need 6 servers at least to meet their minimum requirements.

Couchbase cloud Typical for Couchbase, the user experience is awful and I could never get it to work.

Minimum requirements The minimum requirements in production are 6 servers. On AWS the calculated monthly cost would be ~$600. We achieved better performance using a $16 MongoDB instance on the Mongo Atlas Cloud

writing queries is a nightmare While N1QL is similar to SQL and it's easier to write because of the familiarity, that isn't entirely true. The "smart index" that Couchbase advertises is not smart at all. Creating an index with 5 fields, and only using 4 of them won't result in Couchbase using the same index, so you have to create a new one.

Couchbase UI The UI that comes with every database deployment is full of bugs, barely functional and the developer experience is poor. When I asked Couchbase about it, they basically said they don't care because real developers use SQL directly from code

Consumes too much RAM Couchbase is shipped with a smaller Memcached instance to handle the in-memory cache. Memcached ends up using 8 GB of RAM for 5000 documents! I'm not kidding! We had less than 5000 docs on a Couchbase instance and less than 20 indexes and RAM consumption was always over 8 GB

Memory allocations are useless I asked the Couchbase team a question: If a bucket has 1 GB allocated, what happens when I have more than 1GB stored? Does it overflow? Does it cache somewhere? Do I get an error? I always received the same answer: If you buy the Couchbase enterprise then we can guide you.

247k views247k
Comments
Gabriel
Gabriel

CEO at Naologic

Jan 2, 2020

DecidedonCouchDBCouchDBCouchbaseCouchbaseMemcachedMemcached

We implemented our first large scale EPR application from naologic.com using CouchDB .

Very fast, replication works great, doesn't consume much RAM, queries are blazing fast but we found a problem: the queries were very hard to write, it took a long time to figure out the API, we had to go and write our own @nodejs library to make it work properly.

It lost most of its support. Since then, we migrated to Couchbase and the learning curve was steep but all worth it. Memcached indexing out of the box, full text search works great.

592k views592k
Comments
Mike
Mike

Mar 20, 2020

Needs advice

We Have thousands of .pdf docs generated from the same form but with lots of variability. We need to extract data from open text and more important - from tables inside the docs. The output of Couchbase/Mongo will be one row per document for backend processing. ADOBE renders the tables in an unusable form.

241k views241k
Comments

Detailed Comparison

Memcached
Memcached
Couchbase
Couchbase

Memcached is an in-memory key-value store for small chunks of arbitrary data (strings, objects) from results of database calls, API calls, or page rendering.

Developed as an alternative to traditionally inflexible SQL databases, the Couchbase NoSQL database is built on an open source foundation and architected to help developers solve real-world problems and meet high scalability demands.

-
JSON document database; N1QL (SQL-like query language); Secondary Indexing; Full-Text Indexing; Eventing/Triggers; Real-Time Analytics; Mobile Synchronization for offline support; Autonomous Operator for Kubernetes and OpenShift
Statistics
GitHub Stars
14.0K
GitHub Stars
-
GitHub Forks
3.3K
GitHub Forks
-
Stacks
7.9K
Stacks
505
Followers
5.7K
Followers
606
Votes
473
Votes
110
Pros & Cons
Pros
  • 139
    Fast object cache
  • 129
    High-performance
  • 91
    Stable
  • 65
    Mature
  • 33
    Distributed caching system
Cons
  • 2
    Only caches simple types
Pros
  • 18
    Flexible data model, easy scalability, extremely fast
  • 18
    High performance
  • 9
    Mobile app support
  • 7
    You can query it with Ansi-92 SQL
  • 6
    All nodes can be read/write
Cons
  • 3
    Terrible query language
Integrations
No integrations available
Hadoop
Hadoop
Kafka
Kafka
Elasticsearch
Elasticsearch
Kubernetes
Kubernetes
Apache Spark
Apache Spark

What are some alternatives to Memcached, Couchbase?

MongoDB

MongoDB

MongoDB stores data in JSON-like documents that can vary in structure, offering a dynamic, flexible schema. MongoDB was also designed for high availability and scalability, with built-in replication and auto-sharding.

MySQL

MySQL

The MySQL software delivers a very fast, multi-threaded, multi-user, and robust SQL (Structured Query Language) database server. MySQL Server is intended for mission-critical, heavy-load production systems as well as for embedding into mass-deployed software.

PostgreSQL

PostgreSQL

PostgreSQL is an advanced object-relational database management system that supports an extended subset of the SQL standard, including transactions, foreign keys, subqueries, triggers, user-defined types and functions.

Microsoft SQL Server

Microsoft SQL Server

Microsoft® SQL Server is a database management and analysis system for e-commerce, line-of-business, and data warehousing solutions.

SQLite

SQLite

SQLite is an embedded SQL database engine. Unlike most other SQL databases, SQLite does not have a separate server process. SQLite reads and writes directly to ordinary disk files. A complete SQL database with multiple tables, indices, triggers, and views, is contained in a single disk file.

Cassandra

Cassandra

Partitioning means that Cassandra can distribute your data across multiple machines in an application-transparent matter. Cassandra will automatically repartition as machines are added and removed from the cluster. Row store means that like relational databases, Cassandra organizes data by rows and columns. The Cassandra Query Language (CQL) is a close relative of SQL.

MariaDB

MariaDB

Started by core members of the original MySQL team, MariaDB actively works with outside developers to deliver the most featureful, stable, and sanely licensed open SQL server in the industry. MariaDB is designed as a drop-in replacement of MySQL(R) with more features, new storage engines, fewer bugs, and better performance.

RethinkDB

RethinkDB

RethinkDB is built to store JSON documents, and scale to multiple machines with very little effort. It has a pleasant query language that supports really useful queries like table joins and group by, and is easy to setup and learn.

ArangoDB

ArangoDB

A distributed free and open-source database with a flexible data model for documents, graphs, and key-values. Build high performance applications using a convenient SQL-like query language or JavaScript extensions.

InfluxDB

InfluxDB

InfluxDB is a scalable datastore for metrics, events, and real-time analytics. It has a built-in HTTP API so you don't have to write any server side code to get up and running. InfluxDB is designed to be scalable, simple to install and manage, and fast to get data in and out.

Related Comparisons

Bootstrap
Materialize

Bootstrap vs Materialize

Laravel
Django

Django vs Laravel vs Node.js

Bootstrap
Foundation

Bootstrap vs Foundation vs Material UI

Node.js
Spring Boot

Node.js vs Spring-Boot

Liquibase
Flyway

Flyway vs Liquibase