StackShareStackShare
Follow on
StackShare

Discover and share technology stacks from companies around the world.

Follow on

© 2025 StackShare. All rights reserved.

Product

  • Stacks
  • Tools
  • Feed

Company

  • About
  • Contact

Legal

  • Privacy Policy
  • Terms of Service
  1. Stackups
  2. Application & Data
  3. Databases
  4. Databases
  5. CouchDB vs Presto

CouchDB vs Presto

OverviewDecisionsComparisonAlternatives

Overview

CouchDB
CouchDB
Stacks529
Followers584
Votes139
GitHub Stars6.7K
Forks1.1K
Presto
Presto
Stacks394
Followers1.0K
Votes66

CouchDB vs Presto: What are the differences?

  1. Data Model: CouchDB is a document-oriented NoSQL database that stores data in the form of JSON documents, making it schema-free and flexible. In contrast, Presto is a distributed SQL query engine that allows querying data from various data sources, including traditional databases like MySQL and Hadoop.
  2. Query Language: CouchDB uses MapReduce functions or HTTP API for querying data, while Presto supports ANSI SQL for querying distributed data sets, which offers more flexibility and ease of use for users familiar with SQL syntax.
  3. Storage and Processing: CouchDB is a database storage system, meaning data is stored persistently, while Presto is a query engine that processes data on-demand without storing it, providing real-time data processing capabilities.
  4. Scalability: CouchDB is designed for horizontal scalability through replication and sharding, allowing it to handle large volumes of data efficiently. Presto is horizontally scalable as well, but it primarily focuses on query performance and parallel processing for faster results.
  5. Use Cases: CouchDB is suitable for applications requiring offline availability, synchronization, and document storage, while Presto is ideal for ad-hoc querying, data exploration, and interactive analytics on distributed data sources.
  6. Consistency: CouchDB guarantees eventual consistency using Multi-Version Concurrency Control (MVCC) for conflict resolution, whereas Presto provides strong consistency for query results across the cluster to maintain data accuracy and integrity.

In Summary, the key differences between CouchDB and Presto lie in their data model, query language, storage and processing approach, scalability, use cases, and consistency mechanisms.

Share your Stack

Help developers discover the tools you use. Get visibility for your team's tech choices and contribute to the community's knowledge.

View Docs
CLI (Node.js)
or
Manual

Advice on CouchDB, Presto

Ashish
Ashish

Tech Lead, Big Data Platform at Pinterest

Nov 27, 2019

Needs adviceonApache HiveApache HivePrestoPrestoAmazon EC2Amazon EC2

To provide employees with the critical need of interactive querying, we’ve worked with Presto, an open-source distributed SQL query engine, over the years. Operating Presto at Pinterest’s scale has involved resolving quite a few challenges like, supporting deeply nested and huge thrift schemas, slow/ bad worker detection and remediation, auto-scaling cluster, graceful cluster shutdown and impersonation support for ldap authenticator.

Our infrastructure is built on top of Amazon EC2 and we leverage Amazon S3 for storing our data. This separates compute and storage layers, and allows multiple compute clusters to share the S3 data.

We have hundreds of petabytes of data and tens of thousands of Apache Hive tables. Our Presto clusters are comprised of a fleet of 450 r4.8xl EC2 instances. Presto clusters together have over 100 TBs of memory and 14K vcpu cores. Within Pinterest, we have close to more than 1,000 monthly active users (out of total 1,600+ Pinterest employees) using Presto, who run about 400K queries on these clusters per month.

Each query submitted to Presto cluster is logged to a Kafka topic via Singer. Singer is a logging agent built at Pinterest and we talked about it in a previous post. Each query is logged when it is submitted and when it finishes. When a Presto cluster crashes, we will have query submitted events without corresponding query finished events. These events enable us to capture the effect of cluster crashes over time.

Each Presto cluster at Pinterest has workers on a mix of dedicated AWS EC2 instances and Kubernetes pods. Kubernetes platform provides us with the capability to add and remove workers from a Presto cluster very quickly. The best-case latency on bringing up a new worker on Kubernetes is less than a minute. However, when the Kubernetes cluster itself is out of resources and needs to scale up, it can take up to ten minutes. Some other advantages of deploying on Kubernetes platform is that our Presto deployment becomes agnostic of cloud vendor, instance types, OS, etc.

#BigData #AWS #DataScience #DataEngineering

3.72M views3.72M
Comments
Gabriel
Gabriel

CEO at Naologic

Jan 2, 2020

DecidedonCouchDBCouchDBCouchbaseCouchbaseMemcachedMemcached

We implemented our first large scale EPR application from naologic.com using CouchDB .

Very fast, replication works great, doesn't consume much RAM, queries are blazing fast but we found a problem: the queries were very hard to write, it took a long time to figure out the API, we had to go and write our own @nodejs library to make it work properly.

It lost most of its support. Since then, we migrated to Couchbase and the learning curve was steep but all worth it. Memcached indexing out of the box, full text search works great.

592k views592k
Comments
Karthik
Karthik

CPO at Cantiz

Nov 5, 2019

Decided

The platform deals with time series data from sensors aggregated against things( event data that originates at periodic intervals). We use Cassandra as our distributed database to store time series data. Aggregated data insights from Cassandra is delivered as web API for consumption from other applications. Presto as a distributed sql querying engine, can provide a faster execution time provided the queries are tuned for proper distribution across the cluster. Another objective that we had was to combine Cassandra table data with other business data from RDBMS or other big data systems where presto through its connector architecture would have opened up a whole lot of options for us.

225k views225k
Comments

Detailed Comparison

CouchDB
CouchDB
Presto
Presto

Apache CouchDB is a database that uses JSON for documents, JavaScript for MapReduce indexes, and regular HTTP for its API. CouchDB is a database that completely embraces the web. Store your data with JSON documents. Access your documents and query your indexes with your web browser, via HTTP. Index, combine, and transform your documents with JavaScript.

Distributed SQL Query Engine for Big Data

Terrific single-node database; Clustered database ; HTTP/JSON; Offline first data sync
-
Statistics
GitHub Stars
6.7K
GitHub Stars
-
GitHub Forks
1.1K
GitHub Forks
-
Stacks
529
Stacks
394
Followers
584
Followers
1.0K
Votes
139
Votes
66
Pros & Cons
Pros
  • 43
    JSON
  • 30
    Open source
  • 18
    Highly available
  • 12
    Partition tolerant
  • 11
    Eventual consistency
Pros
  • 18
    Works directly on files in s3 (no ETL)
  • 13
    Open-source
  • 12
    Join multiple databases
  • 10
    Scalable
  • 7
    Gets ready in minutes
Integrations
No integrations available
PostgreSQL
PostgreSQL
Kafka
Kafka
Redis
Redis
MySQL
MySQL
Hadoop
Hadoop
Microsoft SQL Server
Microsoft SQL Server

What are some alternatives to CouchDB, Presto?

MongoDB

MongoDB

MongoDB stores data in JSON-like documents that can vary in structure, offering a dynamic, flexible schema. MongoDB was also designed for high availability and scalability, with built-in replication and auto-sharding.

MySQL

MySQL

The MySQL software delivers a very fast, multi-threaded, multi-user, and robust SQL (Structured Query Language) database server. MySQL Server is intended for mission-critical, heavy-load production systems as well as for embedding into mass-deployed software.

PostgreSQL

PostgreSQL

PostgreSQL is an advanced object-relational database management system that supports an extended subset of the SQL standard, including transactions, foreign keys, subqueries, triggers, user-defined types and functions.

Microsoft SQL Server

Microsoft SQL Server

Microsoft® SQL Server is a database management and analysis system for e-commerce, line-of-business, and data warehousing solutions.

SQLite

SQLite

SQLite is an embedded SQL database engine. Unlike most other SQL databases, SQLite does not have a separate server process. SQLite reads and writes directly to ordinary disk files. A complete SQL database with multiple tables, indices, triggers, and views, is contained in a single disk file.

Cassandra

Cassandra

Partitioning means that Cassandra can distribute your data across multiple machines in an application-transparent matter. Cassandra will automatically repartition as machines are added and removed from the cluster. Row store means that like relational databases, Cassandra organizes data by rows and columns. The Cassandra Query Language (CQL) is a close relative of SQL.

Memcached

Memcached

Memcached is an in-memory key-value store for small chunks of arbitrary data (strings, objects) from results of database calls, API calls, or page rendering.

MariaDB

MariaDB

Started by core members of the original MySQL team, MariaDB actively works with outside developers to deliver the most featureful, stable, and sanely licensed open SQL server in the industry. MariaDB is designed as a drop-in replacement of MySQL(R) with more features, new storage engines, fewer bugs, and better performance.

RethinkDB

RethinkDB

RethinkDB is built to store JSON documents, and scale to multiple machines with very little effort. It has a pleasant query language that supports really useful queries like table joins and group by, and is easy to setup and learn.

ArangoDB

ArangoDB

A distributed free and open-source database with a flexible data model for documents, graphs, and key-values. Build high performance applications using a convenient SQL-like query language or JavaScript extensions.

Related Comparisons

Bootstrap
Materialize

Bootstrap vs Materialize

Laravel
Django

Django vs Laravel vs Node.js

Bootstrap
Foundation

Bootstrap vs Foundation vs Material UI

Node.js
Spring Boot

Node.js vs Spring-Boot

Liquibase
Flyway

Flyway vs Liquibase