StackShareStackShare
Follow on
StackShare

Discover and share technology stacks from companies around the world.

Follow on

© 2025 StackShare. All rights reserved.

Product

  • Stacks
  • Tools
  • Feed

Company

  • About
  • Contact

Legal

  • Privacy Policy
  • Terms of Service
  1. Stackups
  2. Application & Data
  3. Container Registry
  4. Container Tools
  5. Docker Swarm vs Kubernetes

Docker Swarm vs Kubernetes

OverviewDecisionsComparisonAlternatives

Overview

Kubernetes
Kubernetes
Stacks61.2K
Followers52.8K
Votes685
Docker Swarm
Docker Swarm
Stacks779
Followers990
Votes282

Docker Swarm or Kubernetes — Help me decide

By Lee Sylvester

High Availability

Both Docker Swarm and Kubernetes provide High Availability and both support the inclusion of multiple Manager nodes, required to ensure high availability should the Leader Manager node fail.

Docker Swarm recommends an odd number of Manager nodes (1 of 3, 3 of 5 etc.) with no more than seven in a given swarm. Each Manager node can be configured to run application services, though this should be applied with caution. Kubernetes Manager nodes run additional containers, known as Pods, that facilitate core Kubernetes functionality. As such, it is considered bad practice to run application services on Kubernetes Manager nodes. Kubernetes Manager nodes are marked with a NoShedule taint to prevent accidental deployment of services to these nodes.

Both Docker Swarm and Kubernetes utilise Ingress networking, which allow the routing of external traffic to internal services. However, while Kubernetes Ingress is standardised, flexible and extensive, the Docker Swarm implementation aims for simplicity and ease of use.

Kubernetes can be configured to use a local Ingress load balancer, such as Ingress-Nginx, a simple exposed public port using NodePort, or a third-party load balancer, such as Amazon’s ELB.

Docker Swarm uses Raft Consensus to manage cluster state. Each Manager node is kept up-to-date with state information so that, should the Leader Manager fail, another Manager can be delegated as Leader and continue the role without significant changes to application stability. This is the reason for a maximum number of Managers. Maintaining state consistency between large numbers of nodes without a third-party store is problematic.

Kubernetes uses Etcd to manage cluster state. An Etcd Pod is deployed to each Manager node as replicated units. Data stored within one Pod instance is distributed to each of the other instances. As Etcd is an open-source data store, it can be utilised by the deployed application to store custom application configuration data.

Kubernetes provides greater configuration for management of service deployment to nodes when scaling or when nodes fail. As such, the decision to choose Kubernetes over Docker Swarm might be relevant when building applications that require fine tuning in order to ensure optimal use of available resources.

Service Discovery

Both Docker Swarm and Kubernetes provide DNS based service discovery. Docker Swarm utilises a DNS service integrated within the Docker Engine. Each service host domain name is equivalent to the provided service name. There is no notion of namespaces. In order to separate connectivity between services, each service can belong to one or more overlay networks. Direct calls to containers can be achieved by using the container alias as the domain or by using the containers assigned IP address.

Illustration of Swarm Overlay Networks

Kubernetes service domains are maintained by the KubeDNS Pod. Each Pod and service receive an IP address relative to its parent. Thus, Pods within a service can communicate by IP address, too. Kubernetes provides numerous additional means to reference Pods and services through metadata, such as labels and annotations. Like Docker Swarm, Kubernetes services may be referenced by its simple service name. However, Kubernetes also provides for namespacing and use of Fully Qualified Domain Names (FQDN).

Illustration of Kubernetes Pods and Services

The Kubernetes platform also provides a number of environment variables for use in referencing Pods and services in a cluster.

Communicating between services in Docker Swarm is relatively easy when you are aware of the service relationships during orchestration. However, when dealing with runtime service discovery and cross-cluster service discovery, Kubernetes provides more options.

Deployment

Docker Swarm deployments are managed using the Docker utility via the Stack commands. A Stack is a collection of services that form a deployment unit in Docker Swarm.

A Stack deployment is described using the docker-compose specification in YAML files. These files define the services to be deployed within a stack, their source repositories and their relationships to one another. The YAML files also detail the overlay network configurations and which services to assign to them, allowing for compartmentalization and security. A collection of services can be deployed using a single docker-compose.yaml file and additional files are often created to modify values for other deployments, such as testing, staging and production.

Kubernetes deployments are also described using YAML, but can be described using JSON if preferred. The deployment specification is extensive, but minimally requires definitions for Pods and Services. Deployments in Kubernetes are typically much more verbose than those of Docker Swarm, due to the increased configurability.

Both Docker Swarm and Kubernetes provide a means to apply rolling updates and for rolling back those updates as required. If an update deployment fails in Docker Swarm, the update is automatically rolled back to the previous version. Docker Swarm provides no endpoints to query an update status. A failed Kubernetes update will result in both the failed Pods and the original Pods existing side by side. A status endpoint does exist in Kubernetes. Once identified, rollbacks need to be requested explicitly.

As Kubernetes provides a means to select Pods, Services and other assets in a deployment using labels and annotations, running staging containers alongside production ones in the wild is easier in Kubernetes. This way, DevOps can roll out a single unit and test how it works in the production environment before committing to a cluster wide update. Performing the same feat in Docker Swarm is not so easy and is not typically done for this reason.

Docker Swarm deployments are considered much more user-friendly than Kubernetes. A misconception of Docker Swarm is that it cannot support large volumes of nodes and containers. It has been proven to support one thousand nodes and tens of thousands of containers in a single cluster. However, it is important to note that Docker Swarm does have a task limit. Kubernetes, on the other hand, has been documented as supporting ten times this number. With a recommended maximum of seven Managers in a cluster, Docker Swarm might not be sufficient for everyone’s needs, but this should only matter in the very largest of projects.

Performance

Comparing Docker Swarm and Kubernetes for performance is interesting, as both platforms utilise Docker containers and, for the most part, only manage the orchestration aspect of applications. Therefore, applications deployed with Docker Swarm and Kubernetes will operate with similar speed and efficiency.

When analysing orchestration performance, it has been documented that Docker Swarm will deploy and start containers as much as five times more quickly than Kubernetes when under heavy load, mainly due to the fewer moving parts within Docker Swarm and because of its tight integration with the Docker Engine.

Graph of Container Deployment Latency

This same investigation also highlights Docker Swarms ability to respond to API calls much more quickly. While the responsiveness differences are negligible, the investigation does show that Docker Swarm performs without degradation at up to around 90% load, while Kubernetes degrades once it reaches only around 50% load.

Graph of API Responsiveness

In a minimal Kubernetes installation, several containers are deployed to each Manager node, including:

- Etcd manager Pod
- API server Pod
- Kube Controller Pod
- KubeDNS Pod
- A network Pod, such as [Flannel](https://github.com/coreos/flannel) (optional)
- Kube Proxy Pod
- Scheduler Pod

On the worker nodes, Kubernetes will install the Kube Proxy and Kubelet Pods.

Each of these Pods use resources from the machine they are deployed to. In comparison, Docker Swarm doesn’t require the deployment of any containers as the Swarm functionality is built into the Docker service itself.

For most web applications, this should not pose a problem. The resources used by the default Kubernetes Pods is minimal and doesn’t perform much of an impact on the running application. However, this may indeed pose a problem for resource restricted environments, or environments that run on low power, such as Internet-of-Things (IoT) projects.

By Lee Sylvester

Docker Swarm vs Kubernetes: What are the differences?

  1. Scalability: Docker Swarm is designed for small-scale deployments, while Kubernetes is built with scalability in mind. Swarm can manage a maximum of 2000 nodes, whereas Kubernetes can handle tens of thousands of nodes. This makes Kubernetes a better choice for large-scale deployments where scalability is a primary concern.

  2. Networking: Docker Swarm relies on basic overlay networking, which can lead to performance issues in larger clusters. On the other hand, Kubernetes uses a more advanced networking model called Container Network Interface (CNI), which provides more flexibility and better performance for networking across clusters.

  3. Load Balancing: Kubernetes includes a built-in load balancer that can distribute incoming traffic across multiple pods, providing better load balancing capabilities out of the box. Docker Swarm, on the other hand, requires an external load balancer for distributing traffic, adding complexity to the setup process.

  4. Service Discovery: In Docker Swarm, service discovery is based on DNS resolution, which can be slower and less reliable compared to Kubernetes. Kubernetes includes its own service discovery mechanism called DNS service discovery, which provides automatic DNS resolution for services running within the cluster.

  5. Rolling Updates: Kubernetes supports rolling updates out of the box, which allows you to update your application containers without downtime. Docker Swarm also supports rolling updates, but it requires additional configuration and scripting to achieve the same level of automation and control.

  6. Documentation and Community: Kubernetes has a larger and more active community compared to Docker Swarm. This means that there are more resources, documentation, and support available for Kubernetes. Docker Swarm, while still actively supported, may have fewer community-contributed plugins and integrations compared to Kubernetes.

In Summary, Kubernetes offers better scalability, advanced networking, built-in load balancing, more reliable service discovery, simplified rolling updates, and a larger community compared to Docker Swarm.

Share your Stack

Help developers discover the tools you use. Get visibility for your team's tech choices and contribute to the community's knowledge.

View Docs
CLI (Node.js)
or
Manual

Advice on Kubernetes, Docker Swarm

Simon
Simon

Senior Fullstack Developer at QUANTUSflow Software GmbH

Apr 27, 2020

DecidedonGitHubGitHubGitHub PagesGitHub PagesMarkdownMarkdown

Our whole DevOps stack consists of the following tools:

  • @{GitHub}|tool:27| (incl. @{GitHub Pages}|tool:683|/@{Markdown}|tool:1147| for Documentation, GettingStarted and HowTo's) for collaborative review and code management tool
  • Respectively @{Git}|tool:1046| as revision control system
  • @{SourceTree}|tool:1599| as @{Git}|tool:1046| GUI
  • @{Visual Studio Code}|tool:4202| as IDE
  • @{CircleCI}|tool:190| for continuous integration (automatize development process)
  • @{Prettier}|tool:7035| / @{TSLint}|tool:5561| / @{ESLint}|tool:3337| as code linter
  • @{SonarQube}|tool:2638| as quality gate
  • @{Docker}|tool:586| as container management (incl. @{Docker Compose}|tool:3136| for multi-container application management)
  • @{VirtualBox}|tool:774| for operating system simulation tests
  • @{Kubernetes}|tool:1885| as cluster management for docker containers
  • @{Heroku}|tool:133| for deploying in test environments
  • @{nginx}|tool:1052| as web server (preferably used as facade server in production environment)
  • @{SSLMate}|tool:2752| (using @{OpenSSL}|tool:3091|) for certificate management
  • @{Amazon EC2}|tool:18| (incl. @{Amazon S3}|tool:25|) for deploying in stage (production-like) and production environments
  • @{PostgreSQL}|tool:1028| as preferred database system
  • @{Redis}|tool:1031| as preferred in-memory database/store (great for caching)

The main reason we have chosen Kubernetes over Docker Swarm is related to the following artifacts:

  • Key features: Easy and flexible installation, Clear dashboard, Great scaling operations, Monitoring is an integral part, Great load balancing concepts, Monitors the condition and ensures compensation in the event of failure.
  • Applications: An application can be deployed using a combination of pods, deployments, and services (or micro-services).
  • Functionality: Kubernetes as a complex installation and setup process, but it not as limited as Docker Swarm.
  • Monitoring: It supports multiple versions of logging and monitoring when the services are deployed within the cluster (Elasticsearch/Kibana (ELK), Heapster/Grafana, Sysdig cloud integration).
  • Scalability: All-in-one framework for distributed systems.
  • Other Benefits: Kubernetes is backed by the Cloud Native Computing Foundation (CNCF), huge community among container orchestration tools, it is an open source and modular tool that works with any OS.
12.8M views12.8M
Comments
Anis
Anis

Founder at Odix

Nov 7, 2020

Review

I recommend this : -Spring reactive for back end : the fact it's reactive (async) it consumes half of the resources that a sync platform needs (so less CPU -> less money). -Angular : Web Front end ; it's gives you the possibility to use PWA which is a cheap replacement for a mobile app (but more less popular). -Docker images. -Kubernetes to orchestrate all the containers. -I Use Jenkins / blueocean, ansible for my CI/CD (with Github of course) -AWS of course : u can run a K8S cluster there, make it multi AZ (availability zones) to be highly available, use a load balancer and an auto scaler and ur good to go. -You can store data by taking any managed DB or u can deploy ur own (cheap but risky).

You pay less money, but u need some technical 2 - 3 guys to make that done.

Good luck

115k views115k
Comments
Michael
Michael

CEO at asencis Ltd

Jan 5, 2021

Needs advice

We develop rapidly with docker-compose orchestrated services, however, for production - we utilise the very best ideas that Kubernetes has to offer: SCALE! We can scale when needed, setting a maximum and minimum level of nodes for each application layer - scaling only when the load balancer needs it. This allowed us to reduce our devops costs by 40% whilst also maintaining an SLA of 99.87%.

272k views272k
Comments

Detailed Comparison

Kubernetes
Kubernetes
Docker Swarm
Docker Swarm

Kubernetes is an open source orchestration system for Docker containers. It handles scheduling onto nodes in a compute cluster and actively manages workloads to ensure that their state matches the users declared intentions.

Swarm serves the standard Docker API, so any tool which already communicates with a Docker daemon can use Swarm to transparently scale to multiple hosts: Dokku, Compose, Krane, Deis, DockerUI, Shipyard, Drone, Jenkins... and, of course, the Docker client itself.

Lightweight, simple and accessible;Built for a multi-cloud world, public, private or hybrid;Highly modular, designed so that all of its components are easily swappable
-
Statistics
Stacks
61.2K
Stacks
779
Followers
52.8K
Followers
990
Votes
685
Votes
282
Pros & Cons
Pros
  • 166
    Leading docker container management solution
  • 130
    Simple and powerful
  • 108
    Open source
  • 76
    Backed by google
  • 58
    The right abstractions
Cons
  • 16
    Steep learning curve
  • 15
    Poor workflow for development
  • 8
    Orchestrates only infrastructure
  • 4
    High resource requirements for on-prem clusters
  • 2
    Too heavy for simple systems
Pros
  • 55
    Docker friendly
  • 46
    Easy to setup
  • 40
    Standard Docker API
  • 38
    Easy to use
  • 23
    Native
Cons
  • 9
    Low adoption
Integrations
Vagrant
Vagrant
Docker
Docker
Rackspace Cloud Servers
Rackspace Cloud Servers
Microsoft Azure
Microsoft Azure
Google Compute Engine
Google Compute Engine
Ansible
Ansible
Google Kubernetes Engine
Google Kubernetes Engine
Docker
Docker

What are some alternatives to Kubernetes, Docker Swarm?

Rancher

Rancher

Rancher is an open source container management platform that includes full distributions of Kubernetes, Apache Mesos and Docker Swarm, and makes it simple to operate container clusters on any cloud or infrastructure platform.

Docker Compose

Docker Compose

With Compose, you define a multi-container application in a single file, then spin your application up in a single command which does everything that needs to be done to get it running.

Tutum

Tutum

Tutum lets developers easily manage and run lightweight, portable, self-sufficient containers from any application. AWS-like control, Heroku-like ease. The same container that a developer builds and tests on a laptop can run at scale in Tutum.

Portainer

Portainer

It is a universal container management tool. It works with Kubernetes, Docker, Docker Swarm and Azure ACI. It allows you to manage containers without needing to know platform-specific code.

Codefresh

Codefresh

Automate and parallelize testing. Codefresh allows teams to spin up on-demand compositions to run unit and integration tests as part of the continuous integration process. Jenkins integration allows more complex pipelines.

CAST.AI

CAST.AI

It is an AI-driven cloud optimization platform for Kubernetes. Instantly cut your cloud bill, prevent downtime, and 10X the power of DevOps.

k3s

k3s

Certified Kubernetes distribution designed for production workloads in unattended, resource-constrained, remote locations or inside IoT appliances. Supports something as small as a Raspberry Pi or as large as an AWS a1.4xlarge 32GiB server.

Flocker

Flocker

Flocker is a data volume manager and multi-host Docker cluster management tool. With it you can control your data using the same tools you use for your stateless applications. This means that you can run your databases, queues and key-value stores in Docker and move them around as easily as the rest of your app.

Kitematic

Kitematic

Simple Docker App management for Mac OS X

Docker Machine

Docker Machine

Machine lets you create Docker hosts on your computer, on cloud providers, and inside your own data center. It creates servers, installs Docker on them, then configures the Docker client to talk to them.

Related Comparisons

GitHub
Bitbucket

Bitbucket vs GitHub vs GitLab

GitHub
Bitbucket

AWS CodeCommit vs Bitbucket vs GitHub

Kubernetes
Rancher

Docker Swarm vs Kubernetes vs Rancher

gulp
Grunt

Grunt vs Webpack vs gulp

Graphite
Kibana

Grafana vs Graphite vs Kibana