Get Advice Icon

Need advice about which tool to choose?Ask the StackShare community!

Elasticsearch

34.7K
27K
+ 1
1.6K
TimescaleDB

218
373
+ 1
44
Add tool

Elasticsearch vs TimescaleDB: What are the differences?

Introduction

Elasticsearch and TimescaleDB are two popular database management systems, each with its own strengths and use cases. In this comparison, we will highlight the key differences between Elasticsearch and TimescaleDB.

  1. Data Model and Query Language: Elasticsearch is a schema-less, document-oriented database that uses a JSON-based query language. It stores and indexes data in near real-time and supports diverse data types. On the other hand, TimescaleDB is a relational time-series database that extends PostgreSQL, providing the ability to handle time-series data efficiently. It utilizes SQL as its query language and offers additional functions and optimizations specifically designed for time-series data.

  2. Indexing and Search Capabilities: Elasticsearch is known for its powerful search capabilities and full-text indexing. It provides advanced search features like relevance scoring, tokenization, and language analysis. The search queries can span across multiple fields and documents. Conversely, TimescaleDB focuses on efficient time-series data storage and query optimizations. Its indexing mechanism is optimized for time-series data, enabling faster data ingestion and retrieval based on time ranges.

  3. Scalability and Distribution: Elasticsearch is built for horizontal scalability and distributed architectures. It can handle large clusters of nodes and automatically distributes data across the cluster for load balancing and fault tolerance. In contrast, TimescaleDB inherits the scalability features of PostgreSQL, allowing for vertical scalability and support for high-performance hardware. However, it does not natively support automatic data distribution and sharding across multiple nodes.

  4. Data Replication and High Availability: Elasticsearch supports automatic data replication and provides built-in resilience against node failures. It ensures high availability of data by maintaining multiple copies of data across the cluster. On the other hand, TimescaleDB relies on PostgreSQL's replication mechanisms for data redundancy and high availability. It provides options for asynchronous and synchronous replication, giving users more control over replication configurations.

  5. Data Modelling and Schema Evolution: Elasticsearch offers flexible and dynamic data modeling, allowing users to easily add or modify fields in documents without changing the schema. This makes it well-suited for use cases where the data schema evolves over time. Conversely, TimescaleDB follows a more traditional relational data model with predefined schemas. Schema changes require altering tables, which can be a more complex and time-consuming process.

  6. Ecosystem and Integration: Elasticsearch has a rich ecosystem and extensive integration support with various tools and frameworks. It provides plugins and APIs for easy integration with data ingestion pipelines, analytics platforms, and visualization tools. TimescaleDB, being an extension of PostgreSQL, benefits from the vast PostgreSQL ecosystem and supports integration with numerous PostgreSQL-compatible tools and libraries.

In Summary, Elasticsearch is a schema-less, document-oriented database with powerful search capabilities, built for horizontal scalability, and optimized for full-text search. TimescaleDB, on the other hand, is a relational time-series database that extends PostgreSQL, designed for efficient time-series data storage, and provides strong consistency and scalability, albeit without automatic data distribution and search optimizations.

Advice on Elasticsearch and TimescaleDB
Rana Usman Shahid
Chief Technology Officer at TechAvanza · | 6 upvotes · 395.7K views
Needs advice
on
AlgoliaAlgoliaElasticsearchElasticsearch
and
FirebaseFirebase

Hey everybody! (1) I am developing an android application. I have data of around 3 million record (less than a TB). I want to save that data in the cloud. Which company provides the best cloud database services that would suit my scenario? It should be secured, long term useable, and provide better services. I decided to use Firebase Realtime database. Should I stick with Firebase or are there any other companies that provide a better service?

(2) I have the functionality of searching data in my app. Same data (less than a TB). Which search solution should I use in this case? I found Elasticsearch and Algolia search. It should be secure and fast. If any other company provides better services than these, please feel free to suggest them.

Thank you!

See more
Replies (2)
Josh Dzielak
Co-Founder & CTO at Orbit · | 8 upvotes · 297.4K views
Recommends
on
AlgoliaAlgolia

Hi Rana, good question! From my Firebase experience, 3 million records is not too big at all, as long as the cost is within reason for you. With Firebase you will be able to access the data from anywhere, including an android app, and implement fine-grained security with JSON rules. The real-time-ness works perfectly. As a fully managed database, Firebase really takes care of everything. The only thing to watch out for is if you need complex query patterns - Firestore (also in the Firebase family) can be a better fit there.

To answer question 2: the right answer will depend on what's most important to you. Algolia is like Firebase is that it is fully-managed, very easy to set up, and has great SDKs for Android. Algolia is really a full-stack search solution in this case, and it is easy to connect with your Firebase data. Bear in mind that Algolia does cost money, so you'll want to make sure the cost is okay for you, but you will save a lot of engineering time and never have to worry about scale. The search-as-you-type performance with Algolia is flawless, as that is a primary aspect of its design. Elasticsearch can store tons of data and has all the flexibility, is hosted for cheap by many cloud services, and has many users. If you haven't done a lot with search before, the learning curve is higher than Algolia for getting the results ranked properly, and there is another learning curve if you want to do the DevOps part yourself. Both are very good platforms for search, Algolia shines when buliding your app is the most important and you don't want to spend many engineering hours, Elasticsearch shines when you have a lot of data and don't mind learning how to run and optimize it.

See more
Mike Endale
Recommends
on
Cloud FirestoreCloud Firestore

Rana - we use Cloud Firestore at our startup. It handles many million records without any issues. It provides you the same set of features that the Firebase Realtime Database provides on top of the indexing and security trims. The only thing to watch out for is to make sure your Cloud Functions have proper exception handling and there are no infinite loop in the code. This will be too costly if not caught quickly.

For search; Algolia is a great option, but cost is a real consideration. Indexing large number of records can be cost prohibitive for most projects. Elasticsearch is a solid alternative, but requires a little additional work to configure and maintain if you want to self-host.

Hope this helps.

See more
Needs advice
on
InfluxDBInfluxDBMongoDBMongoDB
and
TimescaleDBTimescaleDB

We are building an IOT service with heavy write throughput and fewer reads (we need downsampling records). We prefer to have good reliability when comes to data and prefer to have data retention based on policies.

So, we are looking for what is the best underlying DB for ingesting a lot of data and do queries easily

See more
Replies (3)
Yaron Lavi
Recommends
on
PostgreSQLPostgreSQL

We had a similar challenge. We started with DynamoDB, Timescale, and even InfluxDB and Mongo - to eventually settle with PostgreSQL. Assuming the inbound data pipeline in queued (for example, Kinesis/Kafka -> S3 -> and some Lambda functions), PostgreSQL gave us a We had a similar challenge. We started with DynamoDB, Timescale and even InfluxDB and Mongo - to eventually settle with PostgreSQL. Assuming the inbound data pipeline in queued (for example, Kinesis/Kafka -> S3 -> and some Lambda functions), PostgreSQL gave us better performance by far.

See more
Recommends
on
DruidDruid

Druid is amazing for this use case and is a cloud-native solution that can be deployed on any cloud infrastructure or on Kubernetes. - Easy to scale horizontally - Column Oriented Database - SQL to query data - Streaming and Batch Ingestion - Native search indexes It has feature to work as TimeSeriesDB, Datawarehouse, and has Time-optimized partitioning.

See more
Ankit Malik
Software Developer at CloudCover · | 3 upvotes · 359.2K views
Recommends
on
Google BigQueryGoogle BigQuery

if you want to find a serverless solution with capability of a lot of storage and SQL kind of capability then google bigquery is the best solution for that.

See more
Decisions about Elasticsearch and TimescaleDB
Benoit Larroque
Principal Engineer at Sqreen · | 2 upvotes · 147.7K views

I chose TimescaleDB because to be the backend system of our production monitoring system. We needed to be able to keep track of multiple high cardinality dimensions.

The drawbacks of this decision are our monitoring system is a bit more ad hoc than it used to (New Relic Insights)

We are combining this with Grafana for display and Telegraf for data collection

See more
Manage your open source components, licenses, and vulnerabilities
Learn More
Pros of Elasticsearch
Pros of TimescaleDB
  • 329
    Powerful api
  • 315
    Great search engine
  • 231
    Open source
  • 214
    Restful
  • 200
    Near real-time search
  • 98
    Free
  • 85
    Search everything
  • 54
    Easy to get started
  • 45
    Analytics
  • 26
    Distributed
  • 6
    Fast search
  • 5
    More than a search engine
  • 4
    Awesome, great tool
  • 4
    Great docs
  • 3
    Highly Available
  • 3
    Easy to scale
  • 2
    Nosql DB
  • 2
    Document Store
  • 2
    Great customer support
  • 2
    Intuitive API
  • 2
    Reliable
  • 2
    Potato
  • 2
    Fast
  • 2
    Easy setup
  • 2
    Great piece of software
  • 1
    Open
  • 1
    Scalability
  • 1
    Not stable
  • 1
    Easy to get hot data
  • 1
    Github
  • 1
    Elaticsearch
  • 1
    Actively developing
  • 1
    Responsive maintainers on GitHub
  • 1
    Ecosystem
  • 0
    Community
  • 9
    Open source
  • 8
    Easy Query Language
  • 7
    Time-series data analysis
  • 5
    Established postgresql API and support
  • 4
    Reliable
  • 2
    Paid support for automatic Retention Policy
  • 2
    Chunk-based compression
  • 2
    Postgres integration
  • 2
    High-performance
  • 2
    Fast and scalable
  • 1
    Case studies

Sign up to add or upvote prosMake informed product decisions

Cons of Elasticsearch
Cons of TimescaleDB
  • 7
    Resource hungry
  • 6
    Diffecult to get started
  • 5
    Expensive
  • 4
    Hard to keep stable at large scale
  • 5
    Licensing issues when running on managed databases

Sign up to add or upvote consMake informed product decisions

725
2.3K
58.5K
2.4K
720
- No public GitHub repository available -

What is Elasticsearch?

Elasticsearch is a distributed, RESTful search and analytics engine capable of storing data and searching it in near real time. Elasticsearch, Kibana, Beats and Logstash are the Elastic Stack (sometimes called the ELK Stack).

What is TimescaleDB?

TimescaleDB: An open-source database built for analyzing time-series data with the power and convenience of SQL — on premise, at the edge, or in the cloud.

Need advice about which tool to choose?Ask the StackShare community!

What companies use Elasticsearch?
What companies use TimescaleDB?
Manage your open source components, licenses, and vulnerabilities
Learn More

Sign up to get full access to all the companiesMake informed product decisions

What tools integrate with Elasticsearch?
What tools integrate with TimescaleDB?

Sign up to get full access to all the tool integrationsMake informed product decisions

Blog Posts

May 21 2019 at 12:20AM

Elastic

ElasticsearchKibanaLogstash+4
12
5338
GitHubPythonReact+42
49
41042
GitHubPythonNode.js+47
55
72938
What are some alternatives to Elasticsearch and TimescaleDB?
Datadog
Datadog is the leading service for cloud-scale monitoring. It is used by IT, operations, and development teams who build and operate applications that run on dynamic or hybrid cloud infrastructure. Start monitoring in minutes with Datadog!
Solr
Solr is the popular, blazing fast open source enterprise search platform from the Apache Lucene project. Its major features include powerful full-text search, hit highlighting, faceted search, near real-time indexing, dynamic clustering, database integration, rich document (e.g., Word, PDF) handling, and geospatial search. Solr is highly reliable, scalable and fault tolerant, providing distributed indexing, replication and load-balanced querying, automated failover and recovery, centralized configuration and more. Solr powers the search and navigation features of many of the world's largest internet sites.
Lucene
Lucene Core, our flagship sub-project, provides Java-based indexing and search technology, as well as spellchecking, hit highlighting and advanced analysis/tokenization capabilities.
MongoDB
MongoDB stores data in JSON-like documents that can vary in structure, offering a dynamic, flexible schema. MongoDB was also designed for high availability and scalability, with built-in replication and auto-sharding.
Algolia
Our mission is to make you a search expert. Push data to our API to make it searchable in real time. Build your dream front end with one of our web or mobile UI libraries. Tune relevance and get analytics right from your dashboard.
See all alternatives