StackShareStackShare
Follow on
StackShare

Discover and share technology stacks from companies around the world.

Follow on

© 2025 StackShare. All rights reserved.

Product

  • Stacks
  • Tools
  • Feed

Company

  • About
  • Contact

Legal

  • Privacy Policy
  • Terms of Service
  1. Stackups
  2. Application & Data
  3. Databases
  4. Big Data As A Service
  5. Google BigQuery vs MySQL

Google BigQuery vs MySQL

OverviewDecisionsComparisonAlternatives

Overview

Google BigQuery
Google BigQuery
Stacks1.8K
Followers1.5K
Votes152
MySQL
MySQL
Stacks129.6K
Followers108.6K
Votes3.8K
GitHub Stars11.8K
Forks4.1K

Google BigQuery vs MySQL: What are the differences?

Google BigQuery and MySQL are two popular database management systems. Let's explore the key differences between the two:

  1. Scalability and Performance: One of the main differences between Google BigQuery and MySQL is their scalability and performance capabilities. Google BigQuery is designed to handle massive amounts of data and can effortlessly scale to accommodate datasets that run into petabytes. On the other hand, MySQL is more suitable for smaller to medium-sized workloads and may face performance challenges when dealing with extremely large datasets.

  2. Data Organization: Another significant difference lies in the data organization approach. Google BigQuery follows a columnar storage model, where data is stored in columnar format, allowing for high compression rates and efficient data analysis using SQL queries. In contrast, MySQL employs a row-based storage model, where data is stored in rows, which provides fast read and write access but may limit query performance for complex analytical queries.

  3. Query Language: Google BigQuery uses a SQL-like query language known as BigQuery SQL, which is based on standard SQL but has some specific extensions. It allows for complex querying capabilities and supports nested and repeated fields. On the other hand, MySQL uses the traditional SQL language with its own set of extensions for managing relational databases.

  4. Data Processing Paradigm: Google BigQuery follows a serverless computing paradigm, where users don't have to worry about infrastructure provisioning and can focus solely on data analysis. It automatically manages resources and scales the computing power based on the workload. In contrast, MySQL typically requires manual management of resources, including hardware provisioning, software installation, and optimization.

  5. Advanced Analytical Capabilities: Google BigQuery provides advanced analytical capabilities, such as built-in machine learning algorithms, geographic functions, and support for working with geospatial data. Additionally, it offers integration with other Google Cloud Platform services, allowing seamless data integration and analytics. MySQL, while capable of handling complex queries, may require additional plugins or extensions for advanced analytic functionalities.

  6. Cost Structure: The cost structure of Google BigQuery and MySQL also varies. Google BigQuery follows a pay-as-you-go pricing model based on the amount of data processed and stored, with separate pricing for data storage and data processing. MySQL, on the other hand, is typically licensed based on a subscription or usage model, where pricing is based on factors such as server capacity and features utilized.

In summary, Google BigQuery excels in scalability, columnar storage, advanced analysis capabilities, and serverless architecture. MySQL, on the other hand, offers a traditional row-based storage model, easy setup on-premises, and a more familiar SQL language.

Share your Stack

Help developers discover the tools you use. Get visibility for your team's tech choices and contribute to the community's knowledge.

View Docs
CLI (Node.js)
or
Manual

Advice on Google BigQuery, MySQL

Kyle
Kyle

Web Application Developer at Redacted DevWorks

Dec 3, 2019

DecidedonPostGISPostGIS

While there's been some very clever techniques that has allowed non-natively supported geo querying to be performed, it is incredibly slow in the long game and error prone at best.

MySQL finally introduced it's own GEO functions and special indexing operations for GIS type data. I prototyped with this, as MySQL is the most familiar database to me. But no matter what I did with it, how much tuning i'd give it, how much I played with it, the results would come back inconsistent.

It was very disappointing.

I figured, at this point, that SQL Server, being an enterprise solution authored by one of the biggest worldwide software developers in the world, Microsoft, might contain some decent GIS in it.

I was very disappointed.

Postgres is a Database solution i'm still getting familiar with, but I noticed it had no built in support for GIS. So I hilariously didn't pay it too much attention. That was until I stumbled upon PostGIS and my world changed forever.

449k views449k
Comments
Ido
Ido

Mar 6, 2020

Decided

My data was inherently hierarchical, but there was not enough content in each level of the hierarchy to justify a relational DB (SQL) with a one-to-many approach. It was also far easier to share data between the frontend (Angular), backend (Node.js) and DB (MongoDB) as they all pass around JSON natively. This allowed me to skip the translation layer from relational to hierarchical. You do need to think about correct indexes in MongoDB, and make sure the objects have finite size. For instance, an object in your DB shouldn't have a property which is an array that grows over time, without limit. In addition, I did use MySQL for other types of data, such as a catalog of products which (a) has a lot of data, (b) flat and not hierarchical, (c) needed very fast queries.

575k views575k
Comments
Navraj
Navraj

CEO at SuPragma

Apr 16, 2020

Needs adviceonMySQLMySQLPostgreSQLPostgreSQL

I asked my last question incorrectly. Rephrasing it here.

I am looking for the most secure open source database for my project I'm starting: https://github.com/SuPragma/SuPragma/wiki

Which database is more secure? MySQL or PostgreSQL? Are there others I should be considering? Is it possible to change the encryption keys dynamically?

Thanks,

Raj

401k views401k
Comments

Detailed Comparison

Google BigQuery
Google BigQuery
MySQL
MySQL

Run super-fast, SQL-like queries against terabytes of data in seconds, using the processing power of Google's infrastructure. Load data with ease. Bulk load your data using Google Cloud Storage or stream it in. Easy access. Access BigQuery by using a browser tool, a command-line tool, or by making calls to the BigQuery REST API with client libraries such as Java, PHP or Python.

The MySQL software delivers a very fast, multi-threaded, multi-user, and robust SQL (Structured Query Language) database server. MySQL Server is intended for mission-critical, heavy-load production systems as well as for embedding into mass-deployed software.

All behind the scenes- Your queries can execute asynchronously in the background, and can be polled for status.;Import data with ease- Bulk load your data using Google Cloud Storage or stream it in bursts of up to 1,000 rows per second.;Affordable big data- The first Terabyte of data processed each month is free.;The right interface- Separate interfaces for administration and developers will make sure that you have access to the tools you need.
-
Statistics
GitHub Stars
-
GitHub Stars
11.8K
GitHub Forks
-
GitHub Forks
4.1K
Stacks
1.8K
Stacks
129.6K
Followers
1.5K
Followers
108.6K
Votes
152
Votes
3.8K
Pros & Cons
Pros
  • 28
    High Performance
  • 25
    Easy to use
  • 22
    Fully managed service
  • 19
    Cheap Pricing
  • 16
    Process hundreds of GB in seconds
Cons
  • 1
    You can't unit test changes in BQ data
  • 0
    Sdas
Pros
  • 800
    Sql
  • 679
    Free
  • 562
    Easy
  • 528
    Widely used
  • 490
    Open source
Cons
  • 16
    Owned by a company with their own agenda
  • 3
    Can't roll back schema changes
Integrations
Xplenty
Xplenty
Fluentd
Fluentd
Looker
Looker
Chartio
Chartio
Treasure Data
Treasure Data
No integrations available

What are some alternatives to Google BigQuery, MySQL?

MongoDB

MongoDB

MongoDB stores data in JSON-like documents that can vary in structure, offering a dynamic, flexible schema. MongoDB was also designed for high availability and scalability, with built-in replication and auto-sharding.

PostgreSQL

PostgreSQL

PostgreSQL is an advanced object-relational database management system that supports an extended subset of the SQL standard, including transactions, foreign keys, subqueries, triggers, user-defined types and functions.

Microsoft SQL Server

Microsoft SQL Server

Microsoft® SQL Server is a database management and analysis system for e-commerce, line-of-business, and data warehousing solutions.

SQLite

SQLite

SQLite is an embedded SQL database engine. Unlike most other SQL databases, SQLite does not have a separate server process. SQLite reads and writes directly to ordinary disk files. A complete SQL database with multiple tables, indices, triggers, and views, is contained in a single disk file.

Cassandra

Cassandra

Partitioning means that Cassandra can distribute your data across multiple machines in an application-transparent matter. Cassandra will automatically repartition as machines are added and removed from the cluster. Row store means that like relational databases, Cassandra organizes data by rows and columns. The Cassandra Query Language (CQL) is a close relative of SQL.

Memcached

Memcached

Memcached is an in-memory key-value store for small chunks of arbitrary data (strings, objects) from results of database calls, API calls, or page rendering.

MariaDB

MariaDB

Started by core members of the original MySQL team, MariaDB actively works with outside developers to deliver the most featureful, stable, and sanely licensed open SQL server in the industry. MariaDB is designed as a drop-in replacement of MySQL(R) with more features, new storage engines, fewer bugs, and better performance.

RethinkDB

RethinkDB

RethinkDB is built to store JSON documents, and scale to multiple machines with very little effort. It has a pleasant query language that supports really useful queries like table joins and group by, and is easy to setup and learn.

ArangoDB

ArangoDB

A distributed free and open-source database with a flexible data model for documents, graphs, and key-values. Build high performance applications using a convenient SQL-like query language or JavaScript extensions.

InfluxDB

InfluxDB

InfluxDB is a scalable datastore for metrics, events, and real-time analytics. It has a built-in HTTP API so you don't have to write any server side code to get up and running. InfluxDB is designed to be scalable, simple to install and manage, and fast to get data in and out.

Related Comparisons

Bootstrap
Materialize

Bootstrap vs Materialize

Laravel
Django

Django vs Laravel vs Node.js

Bootstrap
Foundation

Bootstrap vs Foundation vs Material UI

Node.js
Spring Boot

Node.js vs Spring-Boot

Liquibase
Flyway

Flyway vs Liquibase