StackShareStackShare
Follow on
StackShare

Discover and share technology stacks from companies around the world.

Follow on

© 2025 StackShare. All rights reserved.

Product

  • Stacks
  • Tools
  • Feed

Company

  • About
  • Contact

Legal

  • Privacy Policy
  • Terms of Service
  1. Stackups
  2. Application & Data
  3. Databases
  4. Databases
  5. Hadoop vs Kubernetes

Hadoop vs Kubernetes

OverviewDecisionsComparisonAlternatives

Overview

Hadoop
Hadoop
Stacks2.7K
Followers2.3K
Votes56
GitHub Stars15.3K
Forks9.1K
Kubernetes
Kubernetes
Stacks61.2K
Followers52.8K
Votes685

Hadoop vs Kubernetes: What are the differences?

  1. Architecture: Hadoop is a distributed storage and processing system mainly used for handling large-scale data analytics tasks, while Kubernetes is a container orchestration platform that automates the deployment, scaling, and management of containerized applications. Hadoop utilizes a master-slave architecture with nodes such as NameNode, DataNode, and YARN ResourceManager, whereas Kubernetes follows a master-worker architecture with components like Master, Nodes, and Pods.
  2. Purpose: Hadoop is specifically designed for processing and storing big data, providing tools like HDFS for storage and MapReduce for processing, whereas Kubernetes focuses on orchestrating containerized applications in a scalable and efficient manner, allowing seamless deployment and management of containers in a clustered environment.
  3. Resource Management: In Hadoop, resources are managed at the cluster level through YARN (Yet Another Resource Negotiator), allocating resources based on the requirements of MapReduce and other applications, while Kubernetes manages resources at a finer granularity using its scheduler to assign resources (CPU, memory) to individual containers, ensuring optimal usage and isolation.
  4. Fault Tolerance: Hadoop inherently provides fault tolerance mechanisms through data replication and resilient processing, tolerating node failures and ensuring data reliability, while Kubernetes offers fault tolerance by restarting failed containers, rescheduling them on healthy nodes, and supporting multi-zone deployments for increased availability.
  5. Monitoring and Scalability: Hadoop lacks extensive support for monitoring and scaling capabilities out of the box, often necessitating third-party tools for monitoring and scaling tasks, whereas Kubernetes includes built-in monitoring (Prometheus) and scaling features (Horizontal Pod Autoscaler), making it easier to monitor cluster health and scale applications based on demand.

In Summary, Hadoop and Kubernetes differ in architecture, purpose, resource management, fault tolerance, and monitoring, catering to distinct use cases in big data processing and container orchestration.

Share your Stack

Help developers discover the tools you use. Get visibility for your team's tech choices and contribute to the community's knowledge.

View Docs
CLI (Node.js)
or
Manual

Advice on Hadoop, Kubernetes

Simon
Simon

Senior Fullstack Developer at QUANTUSflow Software GmbH

Apr 27, 2020

DecidedonGitHubGitHubGitHub PagesGitHub PagesMarkdownMarkdown

Our whole DevOps stack consists of the following tools:

  • @{GitHub}|tool:27| (incl. @{GitHub Pages}|tool:683|/@{Markdown}|tool:1147| for Documentation, GettingStarted and HowTo's) for collaborative review and code management tool
  • Respectively @{Git}|tool:1046| as revision control system
  • @{SourceTree}|tool:1599| as @{Git}|tool:1046| GUI
  • @{Visual Studio Code}|tool:4202| as IDE
  • @{CircleCI}|tool:190| for continuous integration (automatize development process)
  • @{Prettier}|tool:7035| / @{TSLint}|tool:5561| / @{ESLint}|tool:3337| as code linter
  • @{SonarQube}|tool:2638| as quality gate
  • @{Docker}|tool:586| as container management (incl. @{Docker Compose}|tool:3136| for multi-container application management)
  • @{VirtualBox}|tool:774| for operating system simulation tests
  • @{Kubernetes}|tool:1885| as cluster management for docker containers
  • @{Heroku}|tool:133| for deploying in test environments
  • @{nginx}|tool:1052| as web server (preferably used as facade server in production environment)
  • @{SSLMate}|tool:2752| (using @{OpenSSL}|tool:3091|) for certificate management
  • @{Amazon EC2}|tool:18| (incl. @{Amazon S3}|tool:25|) for deploying in stage (production-like) and production environments
  • @{PostgreSQL}|tool:1028| as preferred database system
  • @{Redis}|tool:1031| as preferred in-memory database/store (great for caching)

The main reason we have chosen Kubernetes over Docker Swarm is related to the following artifacts:

  • Key features: Easy and flexible installation, Clear dashboard, Great scaling operations, Monitoring is an integral part, Great load balancing concepts, Monitors the condition and ensures compensation in the event of failure.
  • Applications: An application can be deployed using a combination of pods, deployments, and services (or micro-services).
  • Functionality: Kubernetes as a complex installation and setup process, but it not as limited as Docker Swarm.
  • Monitoring: It supports multiple versions of logging and monitoring when the services are deployed within the cluster (Elasticsearch/Kibana (ELK), Heapster/Grafana, Sysdig cloud integration).
  • Scalability: All-in-one framework for distributed systems.
  • Other Benefits: Kubernetes is backed by the Cloud Native Computing Foundation (CNCF), huge community among container orchestration tools, it is an open source and modular tool that works with any OS.
12.8M views12.8M
Comments

Detailed Comparison

Hadoop
Hadoop
Kubernetes
Kubernetes

The Apache Hadoop software library is a framework that allows for the distributed processing of large data sets across clusters of computers using simple programming models. It is designed to scale up from single servers to thousands of machines, each offering local computation and storage.

Kubernetes is an open source orchestration system for Docker containers. It handles scheduling onto nodes in a compute cluster and actively manages workloads to ensure that their state matches the users declared intentions.

-
Lightweight, simple and accessible;Built for a multi-cloud world, public, private or hybrid;Highly modular, designed so that all of its components are easily swappable
Statistics
GitHub Stars
15.3K
GitHub Stars
-
GitHub Forks
9.1K
GitHub Forks
-
Stacks
2.7K
Stacks
61.2K
Followers
2.3K
Followers
52.8K
Votes
56
Votes
685
Pros & Cons
Pros
  • 39
    Great ecosystem
  • 11
    One stack to rule them all
  • 4
    Great load balancer
  • 1
    Java syntax
  • 1
    Amazon aws
Pros
  • 166
    Leading docker container management solution
  • 130
    Simple and powerful
  • 108
    Open source
  • 76
    Backed by google
  • 58
    The right abstractions
Cons
  • 16
    Steep learning curve
  • 15
    Poor workflow for development
  • 8
    Orchestrates only infrastructure
  • 4
    High resource requirements for on-prem clusters
  • 2
    Too heavy for simple systems
Integrations
No integrations available
Vagrant
Vagrant
Docker
Docker
Rackspace Cloud Servers
Rackspace Cloud Servers
Microsoft Azure
Microsoft Azure
Google Compute Engine
Google Compute Engine
Ansible
Ansible
Google Kubernetes Engine
Google Kubernetes Engine

What are some alternatives to Hadoop, Kubernetes?

MongoDB

MongoDB

MongoDB stores data in JSON-like documents that can vary in structure, offering a dynamic, flexible schema. MongoDB was also designed for high availability and scalability, with built-in replication and auto-sharding.

MySQL

MySQL

The MySQL software delivers a very fast, multi-threaded, multi-user, and robust SQL (Structured Query Language) database server. MySQL Server is intended for mission-critical, heavy-load production systems as well as for embedding into mass-deployed software.

PostgreSQL

PostgreSQL

PostgreSQL is an advanced object-relational database management system that supports an extended subset of the SQL standard, including transactions, foreign keys, subqueries, triggers, user-defined types and functions.

Rancher

Rancher

Rancher is an open source container management platform that includes full distributions of Kubernetes, Apache Mesos and Docker Swarm, and makes it simple to operate container clusters on any cloud or infrastructure platform.

Microsoft SQL Server

Microsoft SQL Server

Microsoft® SQL Server is a database management and analysis system for e-commerce, line-of-business, and data warehousing solutions.

SQLite

SQLite

SQLite is an embedded SQL database engine. Unlike most other SQL databases, SQLite does not have a separate server process. SQLite reads and writes directly to ordinary disk files. A complete SQL database with multiple tables, indices, triggers, and views, is contained in a single disk file.

Cassandra

Cassandra

Partitioning means that Cassandra can distribute your data across multiple machines in an application-transparent matter. Cassandra will automatically repartition as machines are added and removed from the cluster. Row store means that like relational databases, Cassandra organizes data by rows and columns. The Cassandra Query Language (CQL) is a close relative of SQL.

Docker Compose

Docker Compose

With Compose, you define a multi-container application in a single file, then spin your application up in a single command which does everything that needs to be done to get it running.

Memcached

Memcached

Memcached is an in-memory key-value store for small chunks of arbitrary data (strings, objects) from results of database calls, API calls, or page rendering.

MariaDB

MariaDB

Started by core members of the original MySQL team, MariaDB actively works with outside developers to deliver the most featureful, stable, and sanely licensed open SQL server in the industry. MariaDB is designed as a drop-in replacement of MySQL(R) with more features, new storage engines, fewer bugs, and better performance.

Related Comparisons

GitHub
Bitbucket

Bitbucket vs GitHub vs GitLab

Bootstrap
Materialize

Bootstrap vs Materialize

Laravel
Django

Django vs Laravel vs Node.js

Bootstrap
Foundation

Bootstrap vs Foundation vs Material UI

Node.js
Spring Boot

Node.js vs Spring-Boot