Need advice about which tool to choose?Ask the StackShare community!
PyTorch vs TensorFlow: What are the differences?
Introduction
In this article, we will discuss the key differences between PyTorch and TensorFlow, two popular deep learning frameworks.
Graph Construction: PyTorch is an imperative, or define-by-run, framework, where the computational graph is defined on the go as the code is executed. This enables dynamic graph construction and allows for easy debugging and efficient use of control flow structures. On the other hand, TensorFlow follows a declarative programming model, where the computational graph is defined before the code is executed. This static graph construction enables better optimization and deployment on various devices.
Ease of Use: PyTorch provides a more intuitive and pythonic interface, making it easier for beginners to learn and use. It offers a more straightforward and interactive debugging experience due to its imperative nature. TensorFlow, on the other hand, has a steeper learning curve, mainly due to its static graph construction and verbosity. However, TensorFlow's mature ecosystem and community support offer more extensive resources and tools for development.
Deployment and Production: TensorFlow has better support for deployment and production scenarios. Its ability to optimize and convert models for deployment on various devices, including mobile and embedded systems, makes it a preferred choice for production use cases. PyTorch, although catching up, still lags behind TensorFlow in terms of deployment options and production-readiness.
Community and Ecosystem: TensorFlow has a larger and more mature community compared to PyTorch. It has been around for a longer time and has gained more popularity in the industry. This leads to a wider range of available models, pre-trained networks, and third-party libraries and tools. PyTorch, however, is gaining popularity rapidly and has a growing community. It is known for its research-friendly ecosystem and is widely used in academia and research.
Model Building Flexibility: PyTorch offers more flexibility in building complex models, as it allows for dynamic graph construction and easy integration of Python control flow operations. This makes it easier to experiment and iterate on model architectures and enables faster prototyping. TensorFlow, with its static graph construction, provides better optimization and performance for large-scale production models.
Visualization and Debugging: PyTorch offers better tools for visualization and debugging, making it easier to understand and debug model behavior. Its integration with libraries like Matplotlib and TensorBoardX allows for real-time visualization of scalar values, images, and computation graphs. TensorFlow also provides visualization tools like TensorBoard, but PyTorch's visual debugging capabilities are more user-friendly and accessible.
In Summary, PyTorch is an imperative framework with dynamic graph construction and a more beginner-friendly interface, while TensorFlow is a declarative framework with static graph construction and better deployment options. PyTorch excels in flexibility and research, while TensorFlow shines in production readiness and support.
Pytorch is a famous tool in the realm of machine learning and it has already set up its own ecosystem. Tutorial documentation is really detailed on the official website. It can help us to create our deep learning model and allowed us to use GPU as the hardware support.
I have plenty of projects based on Pytorch and I am familiar with building deep learning models with this tool. I have used TensorFlow too but it is not dynamic. Tensorflow works on a static graph concept that means the user first has to define the computation graph of the model and then run the ML model, whereas PyTorch believes in a dynamic graph that allows defining/manipulating the graph on the go. PyTorch offers an advantage with its dynamic nature of creating graphs.
For my company, we may need to classify image data. Keras provides a high-level Machine Learning framework to achieve this. Specifically, CNN models can be compactly created with little code. Furthermore, already well-proven classifiers are available in Keras, which could be used as Transfer Learning for our use case.
We chose Keras over PyTorch, another Machine Learning framework, as our preliminary research showed that Keras is more compatible with .js. You can also convert a PyTorch model into TensorFlow.js, but it seems that Keras needs to be a middle step in between, which makes Keras a better choice.
For data analysis, we choose a Python-based framework because of Python's simplicity as well as its large community and available supporting tools. We choose PyTorch over TensorFlow for our machine learning library because it has a flatter learning curve and it is easy to debug, in addition to the fact that our team has some existing experience with PyTorch. Numpy is used for data processing because of its user-friendliness, efficiency, and integration with other tools we have chosen. Finally, we decide to include Anaconda in our dev process because of its simple setup process to provide sufficient data science environment for our purposes. The trained model then gets deployed to the back end as a pickle.
A large part of our product is training and using a machine learning model. As such, we chose one of the best coding languages, Python, for machine learning. This coding language has many packages which help build and integrate ML models. For the main portion of the machine learning, we chose PyTorch as it is one of the highest quality ML packages for Python. PyTorch allows for extreme creativity with your models while not being too complex. Also, we chose to include scikit-learn as it contains many useful functions and models which can be quickly deployed. Scikit-learn is perfect for testing models, but it does not have as much flexibility as PyTorch. We also include NumPy and Pandas as these are wonderful Python packages for data manipulation. Also for testing models and depicting data, we have chosen to use Matplotlib and seaborn, a package which creates very good looking plots. Matplotlib is the standard for displaying data in Python and ML. Whereas, seaborn is a package built on top of Matplotlib which creates very visually pleasing plots.
Pros of PyTorch
- Easy to use15
- Developer Friendly11
- Easy to debug10
- Sometimes faster than TensorFlow7
Pros of TensorFlow
- High Performance32
- Connect Research and Production19
- Deep Flexibility16
- Auto-Differentiation12
- True Portability11
- Easy to use6
- High level abstraction5
- Powerful5
Sign up to add or upvote prosMake informed product decisions
Cons of PyTorch
- Lots of code3
- It eats poop1
Cons of TensorFlow
- Hard9
- Hard to debug6
- Documentation not very helpful2