StackShareStackShare
Follow on
StackShare

Discover and share technology stacks from companies around the world.

Follow on

© 2025 StackShare. All rights reserved.

Product

  • Stacks
  • Tools
  • Feed

Company

  • About
  • Contact

Legal

  • Privacy Policy
  • Terms of Service
  1. Stackups
  2. AI
  3. Development & Training Tools
  4. Machine Learning Tools
  5. Theano vs Yellowbrick

Theano vs Yellowbrick

OverviewComparisonAlternatives

Overview

Theano
Theano
Stacks32
Followers65
Votes0
GitHub Stars10.0K
Forks2.5K
Yellowbrick
Yellowbrick
Stacks6
Followers12
Votes0
GitHub Stars4.4K
Forks566

Theano vs Yellowbrick: What are the differences?

Developers describe Theano as "Define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficiently". Theano is a Python library that lets you to define, optimize, and evaluate mathematical expressions, especially ones with multi-dimensional arrays (numpy.ndarray). Using Theano it is possible to attain speeds rivaling hand-crafted C impleme. On the other hand, Yellowbrick is detailed as "Visual analysis and diagnostic tools to facilitate machine learning model selection". It is a suite of visual diagnostic tools called "Visualizers" that extend the scikit-learn API to allow human steering of the model selection process. In a nutshell, it combines scikit-learn with matplotlib in the best tradition of the scikit-learn documentation, but to produce visualizations for your machine learning workflow.

Theano and Yellowbrick belong to "Machine Learning Tools" category of the tech stack.

Theano is an open source tool with 9.13K GitHub stars and 2.52K GitHub forks. Here's a link to Theano's open source repository on GitHub.

Share your Stack

Help developers discover the tools you use. Get visibility for your team's tech choices and contribute to the community's knowledge.

View Docs
CLI (Node.js)
or
Manual

Detailed Comparison

Theano
Theano
Yellowbrick
Yellowbrick

Theano is a Python library that lets you to define, optimize, and evaluate mathematical expressions, especially ones with multi-dimensional arrays (numpy.ndarray).

It is a suite of visual diagnostic tools called "Visualizers" that extend the scikit-learn API to allow human steering of the model selection process. In a nutshell, it combines scikit-learn with matplotlib in the best tradition of the scikit-learn documentation, but to produce visualizations for your machine learning workflow.

-
Evaluate the stability and predictive value of machine learning models and improve the speed of the experimental workflow; Provide visual tools for monitoring model performance in real-world applications; Provide visual interpretation of the behavior of the model in high dimensional feature space.
Statistics
GitHub Stars
10.0K
GitHub Stars
4.4K
GitHub Forks
2.5K
GitHub Forks
566
Stacks
32
Stacks
6
Followers
65
Followers
12
Votes
0
Votes
0
Integrations
NumPy
NumPy
Python
Python
Matplotlib
Matplotlib
scikit-learn
scikit-learn

What are some alternatives to Theano, Yellowbrick?

TensorFlow

TensorFlow

TensorFlow is an open source software library for numerical computation using data flow graphs. Nodes in the graph represent mathematical operations, while the graph edges represent the multidimensional data arrays (tensors) communicated between them. The flexible architecture allows you to deploy computation to one or more CPUs or GPUs in a desktop, server, or mobile device with a single API.

scikit-learn

scikit-learn

scikit-learn is a Python module for machine learning built on top of SciPy and distributed under the 3-Clause BSD license.

PyTorch

PyTorch

PyTorch is not a Python binding into a monolothic C++ framework. It is built to be deeply integrated into Python. You can use it naturally like you would use numpy / scipy / scikit-learn etc.

Keras

Keras

Deep Learning library for Python. Convnets, recurrent neural networks, and more. Runs on TensorFlow or Theano. https://keras.io/

Kubeflow

Kubeflow

The Kubeflow project is dedicated to making Machine Learning on Kubernetes easy, portable and scalable by providing a straightforward way for spinning up best of breed OSS solutions.

TensorFlow.js

TensorFlow.js

Use flexible and intuitive APIs to build and train models from scratch using the low-level JavaScript linear algebra library or the high-level layers API

Polyaxon

Polyaxon

An enterprise-grade open source platform for building, training, and monitoring large scale deep learning applications.

Streamlit

Streamlit

It is the app framework specifically for Machine Learning and Data Science teams. You can rapidly build the tools you need. Build apps in a dozen lines of Python with a simple API.

MLflow

MLflow

MLflow is an open source platform for managing the end-to-end machine learning lifecycle.

H2O

H2O

H2O.ai is the maker behind H2O, the leading open source machine learning platform for smarter applications and data products. H2O operationalizes data science by developing and deploying algorithms and models for R, Python and the Sparkling Water API for Spark.

Related Comparisons

Postman
Swagger UI

Postman vs Swagger UI

Mapbox
Google Maps

Google Maps vs Mapbox

Mapbox
Leaflet

Leaflet vs Mapbox vs OpenLayers

Twilio SendGrid
Mailgun

Mailgun vs Mandrill vs SendGrid

Runscope
Postman

Paw vs Postman vs Runscope