Alternatives to Cloud Firestore logo

Alternatives to Cloud Firestore

MongoDB, Firebase, Firebase Realtime Database, Google Cloud Datastore, and MongoDB Atlas are the most popular alternatives and competitors to Cloud Firestore.
725
895
+ 1
111

What is Cloud Firestore and what are its top alternatives?

Cloud Firestore is a NoSQL document database that lets you easily store, sync, and query data for your mobile and web apps - at global scale.
Cloud Firestore is a tool in the NoSQL Database as a Service category of a tech stack.

Top Alternatives to Cloud Firestore

  • MongoDB
    MongoDB

    MongoDB stores data in JSON-like documents that can vary in structure, offering a dynamic, flexible schema. MongoDB was also designed for high availability and scalability, with built-in replication and auto-sharding. ...

  • Firebase
    Firebase

    Firebase is a cloud service designed to power real-time, collaborative applications. Simply add the Firebase library to your application to gain access to a shared data structure; any changes you make to that data are automatically synchronized with the Firebase cloud and with other clients within milliseconds. ...

  • Firebase Realtime Database
    Firebase Realtime Database

    It is a cloud-hosted NoSQL database that lets you store and sync data between your users in realtime. Data is synced across all clients in realtime, and remains available when your app goes offline. ...

  • Google Cloud Datastore
    Google Cloud Datastore

    Use a managed, NoSQL, schemaless database for storing non-relational data. Cloud Datastore automatically scales as you need it and supports transactions as well as robust, SQL-like queries. ...

  • MongoDB Atlas
    MongoDB Atlas

    MongoDB Atlas is a global cloud database service built and run by the team behind MongoDB. Enjoy the flexibility and scalability of a document database, with the ease and automation of a fully managed service on your preferred cloud. ...

  • MySQL
    MySQL

    The MySQL software delivers a very fast, multi-threaded, multi-user, and robust SQL (Structured Query Language) database server. MySQL Server is intended for mission-critical, heavy-load production systems as well as for embedding into mass-deployed software. ...

  • PostgreSQL
    PostgreSQL

    PostgreSQL is an advanced object-relational database management system that supports an extended subset of the SQL standard, including transactions, foreign keys, subqueries, triggers, user-defined types and functions. ...

  • Redis
    Redis

    Redis is an open source (BSD licensed), in-memory data structure store, used as a database, cache, and message broker. Redis provides data structures such as strings, hashes, lists, sets, sorted sets with range queries, bitmaps, hyperloglogs, geospatial indexes, and streams. ...

Cloud Firestore alternatives & related posts

MongoDB logo

MongoDB

94K
4.1K
The database for giant ideas
94K
4.1K
PROS OF MONGODB
  • 828
    Document-oriented storage
  • 593
    No sql
  • 553
    Ease of use
  • 464
    Fast
  • 410
    High performance
  • 255
    Free
  • 218
    Open source
  • 180
    Flexible
  • 145
    Replication & high availability
  • 112
    Easy to maintain
  • 42
    Querying
  • 39
    Easy scalability
  • 38
    Auto-sharding
  • 37
    High availability
  • 31
    Map/reduce
  • 27
    Document database
  • 25
    Easy setup
  • 25
    Full index support
  • 16
    Reliable
  • 15
    Fast in-place updates
  • 14
    Agile programming, flexible, fast
  • 12
    No database migrations
  • 8
    Easy integration with Node.Js
  • 8
    Enterprise
  • 6
    Enterprise Support
  • 5
    Great NoSQL DB
  • 4
    Support for many languages through different drivers
  • 3
    Schemaless
  • 3
    Aggregation Framework
  • 3
    Drivers support is good
  • 2
    Fast
  • 2
    Managed service
  • 2
    Easy to Scale
  • 2
    Awesome
  • 2
    Consistent
  • 1
    Good GUI
  • 1
    Acid Compliant
CONS OF MONGODB
  • 6
    Very slowly for connected models that require joins
  • 3
    Not acid compliant
  • 2
    Proprietary query language

related MongoDB posts

Jeyabalaji Subramanian

Recently we were looking at a few robust and cost-effective ways of replicating the data that resides in our production MongoDB to a PostgreSQL database for data warehousing and business intelligence.

We set ourselves the following criteria for the optimal tool that would do this job: - The data replication must be near real-time, yet it should NOT impact the production database - The data replication must be horizontally scalable (based on the load), asynchronous & crash-resilient

Based on the above criteria, we selected the following tools to perform the end to end data replication:

We chose MongoDB Stitch for picking up the changes in the source database. It is the serverless platform from MongoDB. One of the services offered by MongoDB Stitch is Stitch Triggers. Using stitch triggers, you can execute a serverless function (in Node.js) in real time in response to changes in the database. When there are a lot of database changes, Stitch automatically "feeds forward" these changes through an asynchronous queue.

We chose Amazon SQS as the pipe / message backbone for communicating the changes from MongoDB to our own replication service. Interestingly enough, MongoDB stitch offers integration with AWS services.

In the Node.js function, we wrote minimal functionality to communicate the database changes (insert / update / delete / replace) to Amazon SQS.

Next we wrote a minimal micro-service in Python to listen to the message events on SQS, pickup the data payload & mirror the DB changes on to the target Data warehouse. We implemented source data to target data translation by modelling target table structures through SQLAlchemy . We deployed this micro-service as AWS Lambda with Zappa. With Zappa, deploying your services as event-driven & horizontally scalable Lambda service is dumb-easy.

In the end, we got to implement a highly scalable near realtime Change Data Replication service that "works" and deployed to production in a matter of few days!

See more
Robert Zuber

We use MongoDB as our primary #datastore. Mongo's approach to replica sets enables some fantastic patterns for operations like maintenance, backups, and #ETL.

As we pull #microservices from our #monolith, we are taking the opportunity to build them with their own datastores using PostgreSQL. We also use Redis to cache data we’d never store permanently, and to rate-limit our requests to partners’ APIs (like GitHub).

When we’re dealing with large blobs of immutable data (logs, artifacts, and test results), we store them in Amazon S3. We handle any side-effects of S3’s eventual consistency model within our own code. This ensures that we deal with user requests correctly while writes are in process.

See more
Firebase logo

Firebase

41.3K
2K
The Realtime App Platform
41.3K
2K
PROS OF FIREBASE
  • 371
    Realtime backend made easy
  • 270
    Fast and responsive
  • 242
    Easy setup
  • 215
    Real-time
  • 191
    JSON
  • 134
    Free
  • 128
    Backed by google
  • 83
    Angular adaptor
  • 68
    Reliable
  • 36
    Great customer support
  • 32
    Great documentation
  • 25
    Real-time synchronization
  • 21
    Mobile friendly
  • 19
    Rapid prototyping
  • 14
    Great security
  • 12
    Automatic scaling
  • 11
    Freakingly awesome
  • 8
    Super fast development
  • 8
    Angularfire is an amazing addition!
  • 8
    Chat
  • 6
    Firebase hosting
  • 6
    Built in user auth/oauth
  • 6
    Awesome next-gen backend
  • 6
    Ios adaptor
  • 4
    Speed of light
  • 4
    Very easy to use
  • 3
    Great
  • 3
    It's made development super fast
  • 3
    Brilliant for startups
  • 2
    Free hosting
  • 2
    Cloud functions
  • 2
    JS Offline and Sync suport
  • 2
    Low battery consumption
  • 2
    .net
  • 2
    The concurrent updates create a great experience
  • 2
    Push notification
  • 2
    I can quickly create static web apps with no backend
  • 2
    Great all-round functionality
  • 2
    Free authentication solution
  • 1
    Easy Reactjs integration
  • 1
    Google's support
  • 1
    Free SSL
  • 1
    CDN & cache out of the box
  • 1
    Easy to use
  • 1
    Large
  • 1
    Faster workflow
  • 1
    Serverless
  • 1
    Good Free Limits
  • 1
    Simple and easy
CONS OF FIREBASE
  • 31
    Can become expensive
  • 16
    No open source, you depend on external company
  • 15
    Scalability is not infinite
  • 9
    Not Flexible Enough
  • 7
    Cant filter queries
  • 3
    Very unstable server
  • 3
    No Relational Data
  • 2
    Too many errors
  • 2
    No offline sync

related Firebase posts

Stephen Gheysens
Lead Solutions Engineer at Inscribe · | 14 upvotes · 1.8M views

Hi Otensia! I'd definitely recommend using the skills you've already got and building with JavaScript is a smart way to go these days. Most platform services have JavaScript/Node SDKs or NPM packages, many serverless platforms support Node in case you need to write any backend logic, and JavaScript is incredibly popular - meaning it will be easy to hire for, should you ever need to.

My advice would be "don't reinvent the wheel". If you already have a skill set that will work well to solve the problem at hand, and you don't need it for any other projects, don't spend the time jumping into a new language. If you're looking for an excuse to learn something new, it would be better to invest that time in learning a new platform/tool that compliments your knowledge of JavaScript. For this project, I might recommend using Netlify, Vercel, or Google Firebase to quickly and easily deploy your web app. If you need to add user authentication, there are great examples out there for Firebase Authentication, Auth0, or even Magic (a newcomer on the Auth scene, but very user friendly). All of these services work very well with a JavaScript-based application.

See more
Eugene Cheah

For inboxkitten.com, an opensource disposable email service;

We migrated our serverless workload from Cloud Functions for Firebase to CloudFlare workers, taking advantage of the lower cost and faster-performing edge computing of Cloudflare network. Made possible due to our extremely low CPU and RAM overhead of our serverless functions.

If I were to summarize the limitation of Cloudflare (as oppose to firebase/gcp functions), it would be ...

  1. <5ms CPU time limit
  2. Incompatible with express.js
  3. one script limitation per domain

Limitations our workload is able to conform with (YMMV)

For hosting of static files, we migrated from Firebase to CommonsHost

More details on the trade-off in between both serverless providers is in the article

See more
Firebase Realtime Database logo

Firebase Realtime Database

110
7
Store and sync data in real time
110
7
PROS OF FIREBASE REALTIME DATABASE
  • 7
    Very fast
  • 0
    Casandra
CONS OF FIREBASE REALTIME DATABASE
  • 2
    Poor query

related Firebase Realtime Database posts

We are building a social media app, where users will post images, like their post, and make friends based on their interest. We are currently using Cloud Firestore and Firebase Realtime Database. We are looking for another database like Amazon DynamoDB; how much this decision can be efficient in terms of pricing and overhead?

See more

Which option do you prefer to go with (considering scalability, and a limited budget):

Technologies in use: Angular / .NET Core 6

What do we want to achieve?

We want to create simple near-time web notifications, those notifications can be categorized into 2 sections:

  • User notification: which represents user activities and engagements.

  • System notification e.g release notes and maintenance time. The notification object is too simple just a title, body, userId, notificationStatus, and readAt. notification status is an enum with 3 values: unread, menuOpened, Read.

Options:

  1. use Firebase Realtime Database for user notifications and Microsoft SQL Server for system notifications (maybe using long poling or so to frequently call the getSystemNotification API ).

  2. use SignalR to push new notifications along with the SqlServer database and store both user and system into one table (as they almost have the same attributes)

See more
Google Cloud Datastore logo

Google Cloud Datastore

257
12
A Fully Managed NoSQL Data Storage Service
257
12
PROS OF GOOGLE CLOUD DATASTORE
  • 7
    High scalability
  • 2
    Serverless
  • 2
    Ability to query any property
  • 1
    Pay for what you use
CONS OF GOOGLE CLOUD DATASTORE
    Be the first to leave a con

    related Google Cloud Datastore posts

    MongoDB Atlas logo

    MongoDB Atlas

    846
    34
    Deploy and scale a MongoDB cluster in the cloud with just a few clicks
    846
    34
    PROS OF MONGODB ATLAS
    • 10
      MongoDB SaaS for and by Mongo, makes it so easy
    • 6
      Amazon VPC peering
    • 4
      Granular role-based access controls
    • 4
      MongoDB atlas is GUItool through you can manage all DB
    • 3
      Use it anywhere
    • 3
      Cloud instance to be worked with
    • 3
      Built-in data browser
    • 1
      Simple and easy to integrate
    CONS OF MONGODB ATLAS
      Be the first to leave a con

      related MongoDB Atlas posts

      Praveen Mooli
      Engineering Manager at Taylor and Francis · | 19 upvotes · 4M views

      We are in the process of building a modern content platform to deliver our content through various channels. We decided to go with Microservices architecture as we wanted scale. Microservice architecture style is an approach to developing an application as a suite of small independently deployable services built around specific business capabilities. You can gain modularity, extensive parallelism and cost-effective scaling by deploying services across many distributed servers. Microservices modularity facilitates independent updates/deployments, and helps to avoid single point of failure, which can help prevent large-scale outages. We also decided to use Event Driven Architecture pattern which is a popular distributed asynchronous architecture pattern used to produce highly scalable applications. The event-driven architecture is made up of highly decoupled, single-purpose event processing components that asynchronously receive and process events.

      To build our #Backend capabilities we decided to use the following: 1. #Microservices - Java with Spring Boot , Node.js with ExpressJS and Python with Flask 2. #Eventsourcingframework - Amazon Kinesis , Amazon Kinesis Firehose , Amazon SNS , Amazon SQS, AWS Lambda 3. #Data - Amazon RDS , Amazon DynamoDB , Amazon S3 , MongoDB Atlas

      To build #Webapps we decided to use Angular 2 with RxJS

      #Devops - GitHub , Travis CI , Terraform , Docker , Serverless

      See more

      Repost

      Overview: To put it simply, we plan to use the MERN stack to build our web application. MongoDB will be used as our primary database. We will use ExpressJS alongside Node.js to set up our API endpoints. Additionally, we plan to use React to build our SPA on the client side and use Redis on the server side as our primary caching solution. Initially, while working on the project, we plan to deploy our server and client both on Heroku . However, Heroku is very limited and we will need the benefits of an Infrastructure as a Service so we will use Amazon EC2 to later deploy our final version of the application.

      Serverside: nodemon will allow us to automatically restart a running instance of our node app when files changes take place. We decided to use MongoDB because it is a non relational database which uses the Document Object Model. This allows a lot of flexibility as compared to a RDMS like SQL which requires a very structural model of data that does not change too much. Another strength of MongoDB is its ease in scalability. We will use Mongoose along side MongoDB to model our application data. Additionally, we will host our MongoDB cluster remotely on MongoDB Atlas. Bcrypt will be used to encrypt user passwords that will be stored in the DB. This is to avoid the risks of storing plain text passwords. Moreover, we will use Cloudinary to store images uploaded by the user. We will also use the Twilio SendGrid API to enable automated emails sent by our application. To protect private API endpoints, we will use JSON Web Token and Passport. Also, PayPal will be used as a payment gateway to accept payments from users.

      Client Side: As mentioned earlier, we will use React to build our SPA. React uses a virtual DOM which is very efficient in rendering a page. Also React will allow us to reuse components. Furthermore, it is very popular and there is a large community that uses React so it can be helpful if we run into issues. We also plan to make a cross platform mobile application later and using React will allow us to reuse a lot of our code with React Native. Redux will be used to manage state. Redux works great with React and will help us manage a global state in the app and avoid the complications of each component having its own state. Additionally, we will use Bootstrap components and custom CSS to style our app.

      Other: Git will be used for version control. During the later stages of our project, we will use Google Analytics to collect useful data regarding user interactions. Moreover, Slack will be our primary communication tool. Also, we will use Visual Studio Code as our primary code editor because it is very light weight and has a wide variety of extensions that will boost productivity. Postman will be used to interact with and debug our API endpoints.

      See more
      MySQL logo

      MySQL

      126.1K
      3.8K
      The world's most popular open source database
      126.1K
      3.8K
      PROS OF MYSQL
      • 800
        Sql
      • 679
        Free
      • 562
        Easy
      • 528
        Widely used
      • 490
        Open source
      • 180
        High availability
      • 160
        Cross-platform support
      • 104
        Great community
      • 79
        Secure
      • 75
        Full-text indexing and searching
      • 26
        Fast, open, available
      • 16
        Reliable
      • 16
        SSL support
      • 15
        Robust
      • 9
        Enterprise Version
      • 7
        Easy to set up on all platforms
      • 3
        NoSQL access to JSON data type
      • 1
        Relational database
      • 1
        Easy, light, scalable
      • 1
        Sequel Pro (best SQL GUI)
      • 1
        Replica Support
      CONS OF MYSQL
      • 16
        Owned by a company with their own agenda
      • 3
        Can't roll back schema changes

      related MySQL posts

      Nick Rockwell
      SVP, Engineering at Fastly · | 46 upvotes · 4.2M views

      When I joined NYT there was already broad dissatisfaction with the LAMP (Linux Apache HTTP Server MySQL PHP) Stack and the front end framework, in particular. So, I wasn't passing judgment on it. I mean, LAMP's fine, you can do good work in LAMP. It's a little dated at this point, but it's not ... I didn't want to rip it out for its own sake, but everyone else was like, "We don't like this, it's really inflexible." And I remember from being outside the company when that was called MIT FIVE when it had launched. And been observing it from the outside, and I was like, you guys took so long to do that and you did it so carefully, and yet you're not happy with your decisions. Why is that? That was more the impetus. If we're going to do this again, how are we going to do it in a way that we're gonna get a better result?

      So we're moving quickly away from LAMP, I would say. So, right now, the new front end is React based and using Apollo. And we've been in a long, protracted, gradual rollout of the core experiences.

      React is now talking to GraphQL as a primary API. There's a Node.js back end, to the front end, which is mainly for server-side rendering, as well.

      Behind there, the main repository for the GraphQL server is a big table repository, that we call Bodega because it's a convenience store. And that reads off of a Kafka pipeline.

      See more
      Tim Abbott

      We've been using PostgreSQL since the very early days of Zulip, but we actually didn't use it from the beginning. Zulip started out as a MySQL project back in 2012, because we'd heard it was a good choice for a startup with a wide community. However, we found that even though we were using the Django ORM for most of our database access, we spent a lot of time fighting with MySQL. Issues ranged from bad collation defaults, to bad query plans which required a lot of manual query tweaks.

      We ended up getting so frustrated that we tried out PostgresQL, and the results were fantastic. We didn't have to do any real customization (just some tuning settings for how big a server we had), and all of our most important queries were faster out of the box. As a result, we were able to delete a bunch of custom queries escaping the ORM that we'd written to make the MySQL query planner happy (because postgres just did the right thing automatically).

      And then after that, we've just gotten a ton of value out of postgres. We use its excellent built-in full-text search, which has helped us avoid needing to bring in a tool like Elasticsearch, and we've really enjoyed features like its partial indexes, which saved us a lot of work adding unnecessary extra tables to get good performance for things like our "unread messages" and "starred messages" indexes.

      I can't recommend it highly enough.

      See more
      PostgreSQL logo

      PostgreSQL

      98.8K
      3.5K
      A powerful, open source object-relational database system
      98.8K
      3.5K
      PROS OF POSTGRESQL
      • 764
        Relational database
      • 510
        High availability
      • 439
        Enterprise class database
      • 383
        Sql
      • 304
        Sql + nosql
      • 173
        Great community
      • 147
        Easy to setup
      • 131
        Heroku
      • 130
        Secure by default
      • 113
        Postgis
      • 50
        Supports Key-Value
      • 48
        Great JSON support
      • 34
        Cross platform
      • 33
        Extensible
      • 28
        Replication
      • 26
        Triggers
      • 23
        Multiversion concurrency control
      • 23
        Rollback
      • 21
        Open source
      • 18
        Heroku Add-on
      • 17
        Stable, Simple and Good Performance
      • 15
        Powerful
      • 13
        Lets be serious, what other SQL DB would you go for?
      • 11
        Good documentation
      • 9
        Scalable
      • 8
        Free
      • 8
        Reliable
      • 8
        Intelligent optimizer
      • 7
        Transactional DDL
      • 7
        Modern
      • 6
        One stop solution for all things sql no matter the os
      • 5
        Relational database with MVCC
      • 5
        Faster Development
      • 4
        Full-Text Search
      • 4
        Developer friendly
      • 3
        Excellent source code
      • 3
        Free version
      • 3
        Great DB for Transactional system or Application
      • 3
        Relational datanbase
      • 3
        search
      • 3
        Open-source
      • 2
        Text
      • 2
        Full-text
      • 1
        Can handle up to petabytes worth of size
      • 1
        Composability
      • 1
        Multiple procedural languages supported
      • 0
        Native
      CONS OF POSTGRESQL
      • 10
        Table/index bloatings

      related PostgreSQL posts

      Simon Reymann
      Senior Fullstack Developer at QUANTUSflow Software GmbH · | 30 upvotes · 11.9M views

      Our whole DevOps stack consists of the following tools:

      • GitHub (incl. GitHub Pages/Markdown for Documentation, GettingStarted and HowTo's) for collaborative review and code management tool
      • Respectively Git as revision control system
      • SourceTree as Git GUI
      • Visual Studio Code as IDE
      • CircleCI for continuous integration (automatize development process)
      • Prettier / TSLint / ESLint as code linter
      • SonarQube as quality gate
      • Docker as container management (incl. Docker Compose for multi-container application management)
      • VirtualBox for operating system simulation tests
      • Kubernetes as cluster management for docker containers
      • Heroku for deploying in test environments
      • nginx as web server (preferably used as facade server in production environment)
      • SSLMate (using OpenSSL) for certificate management
      • Amazon EC2 (incl. Amazon S3) for deploying in stage (production-like) and production environments
      • PostgreSQL as preferred database system
      • Redis as preferred in-memory database/store (great for caching)

      The main reason we have chosen Kubernetes over Docker Swarm is related to the following artifacts:

      • Key features: Easy and flexible installation, Clear dashboard, Great scaling operations, Monitoring is an integral part, Great load balancing concepts, Monitors the condition and ensures compensation in the event of failure.
      • Applications: An application can be deployed using a combination of pods, deployments, and services (or micro-services).
      • Functionality: Kubernetes as a complex installation and setup process, but it not as limited as Docker Swarm.
      • Monitoring: It supports multiple versions of logging and monitoring when the services are deployed within the cluster (Elasticsearch/Kibana (ELK), Heapster/Grafana, Sysdig cloud integration).
      • Scalability: All-in-one framework for distributed systems.
      • Other Benefits: Kubernetes is backed by the Cloud Native Computing Foundation (CNCF), huge community among container orchestration tools, it is an open source and modular tool that works with any OS.
      See more
      Jeyabalaji Subramanian

      Recently we were looking at a few robust and cost-effective ways of replicating the data that resides in our production MongoDB to a PostgreSQL database for data warehousing and business intelligence.

      We set ourselves the following criteria for the optimal tool that would do this job: - The data replication must be near real-time, yet it should NOT impact the production database - The data replication must be horizontally scalable (based on the load), asynchronous & crash-resilient

      Based on the above criteria, we selected the following tools to perform the end to end data replication:

      We chose MongoDB Stitch for picking up the changes in the source database. It is the serverless platform from MongoDB. One of the services offered by MongoDB Stitch is Stitch Triggers. Using stitch triggers, you can execute a serverless function (in Node.js) in real time in response to changes in the database. When there are a lot of database changes, Stitch automatically "feeds forward" these changes through an asynchronous queue.

      We chose Amazon SQS as the pipe / message backbone for communicating the changes from MongoDB to our own replication service. Interestingly enough, MongoDB stitch offers integration with AWS services.

      In the Node.js function, we wrote minimal functionality to communicate the database changes (insert / update / delete / replace) to Amazon SQS.

      Next we wrote a minimal micro-service in Python to listen to the message events on SQS, pickup the data payload & mirror the DB changes on to the target Data warehouse. We implemented source data to target data translation by modelling target table structures through SQLAlchemy . We deployed this micro-service as AWS Lambda with Zappa. With Zappa, deploying your services as event-driven & horizontally scalable Lambda service is dumb-easy.

      In the end, we got to implement a highly scalable near realtime Change Data Replication service that "works" and deployed to production in a matter of few days!

      See more
      Redis logo

      Redis

      59.8K
      3.9K
      Open source (BSD licensed), in-memory data structure store
      59.8K
      3.9K
      PROS OF REDIS
      • 887
        Performance
      • 542
        Super fast
      • 514
        Ease of use
      • 444
        In-memory cache
      • 324
        Advanced key-value cache
      • 194
        Open source
      • 182
        Easy to deploy
      • 165
        Stable
      • 156
        Free
      • 121
        Fast
      • 42
        High-Performance
      • 40
        High Availability
      • 35
        Data Structures
      • 32
        Very Scalable
      • 24
        Replication
      • 23
        Pub/Sub
      • 22
        Great community
      • 19
        "NoSQL" key-value data store
      • 16
        Hashes
      • 13
        Sets
      • 11
        Sorted Sets
      • 10
        Lists
      • 10
        NoSQL
      • 9
        Async replication
      • 9
        BSD licensed
      • 8
        Integrates super easy with Sidekiq for Rails background
      • 8
        Bitmaps
      • 7
        Open Source
      • 7
        Keys with a limited time-to-live
      • 6
        Lua scripting
      • 6
        Strings
      • 5
        Awesomeness for Free
      • 5
        Hyperloglogs
      • 4
        Runs server side LUA
      • 4
        Transactions
      • 4
        Networked
      • 4
        Outstanding performance
      • 4
        Feature Rich
      • 4
        Written in ANSI C
      • 4
        LRU eviction of keys
      • 3
        Data structure server
      • 3
        Performance & ease of use
      • 2
        Temporarily kept on disk
      • 2
        Dont save data if no subscribers are found
      • 2
        Automatic failover
      • 2
        Easy to use
      • 2
        Scalable
      • 2
        Channels concept
      • 2
        Object [key/value] size each 500 MB
      • 2
        Existing Laravel Integration
      • 2
        Simple
      CONS OF REDIS
      • 15
        Cannot query objects directly
      • 3
        No secondary indexes for non-numeric data types
      • 1
        No WAL

      related Redis posts

      Russel Werner
      Lead Engineer at StackShare · | 32 upvotes · 2.9M views

      StackShare Feed is built entirely with React, Glamorous, and Apollo. One of our objectives with the public launch of the Feed was to enable a Server-side rendered (SSR) experience for our organic search traffic. When you visit the StackShare Feed, and you aren't logged in, you are delivered the Trending feed experience. We use an in-house Node.js rendering microservice to generate this HTML. This microservice needs to run and serve requests independent of our Rails web app. Up until recently, we had a mono-repo with our Rails and React code living happily together and all served from the same web process. In order to deploy our SSR app into a Heroku environment, we needed to split out our front-end application into a separate repo in GitHub. The driving factor in this decision was mostly due to limitations imposed by Heroku specifically with how processes can't communicate with each other. A new SSR app was created in Heroku and linked directly to the frontend repo so it stays in-sync with changes.

      Related to this, we need a way to "deploy" our frontend changes to various server environments without building & releasing the entire Ruby application. We built a hybrid Amazon S3 Amazon CloudFront solution to host our Webpack bundles. A new CircleCI script builds the bundles and uploads them to S3. The final step in our rollout is to update some keys in Redis so our Rails app knows which bundles to serve. The result of these efforts were significant. Our frontend team now moves independently of our backend team, our build & release process takes only a few minutes, we are now using an edge CDN to serve JS assets, and we have pre-rendered React pages!

      #StackDecisionsLaunch #SSR #Microservices #FrontEndRepoSplit

      See more
      Simon Reymann
      Senior Fullstack Developer at QUANTUSflow Software GmbH · | 30 upvotes · 11.9M views

      Our whole DevOps stack consists of the following tools:

      • GitHub (incl. GitHub Pages/Markdown for Documentation, GettingStarted and HowTo's) for collaborative review and code management tool
      • Respectively Git as revision control system
      • SourceTree as Git GUI
      • Visual Studio Code as IDE
      • CircleCI for continuous integration (automatize development process)
      • Prettier / TSLint / ESLint as code linter
      • SonarQube as quality gate
      • Docker as container management (incl. Docker Compose for multi-container application management)
      • VirtualBox for operating system simulation tests
      • Kubernetes as cluster management for docker containers
      • Heroku for deploying in test environments
      • nginx as web server (preferably used as facade server in production environment)
      • SSLMate (using OpenSSL) for certificate management
      • Amazon EC2 (incl. Amazon S3) for deploying in stage (production-like) and production environments
      • PostgreSQL as preferred database system
      • Redis as preferred in-memory database/store (great for caching)

      The main reason we have chosen Kubernetes over Docker Swarm is related to the following artifacts:

      • Key features: Easy and flexible installation, Clear dashboard, Great scaling operations, Monitoring is an integral part, Great load balancing concepts, Monitors the condition and ensures compensation in the event of failure.
      • Applications: An application can be deployed using a combination of pods, deployments, and services (or micro-services).
      • Functionality: Kubernetes as a complex installation and setup process, but it not as limited as Docker Swarm.
      • Monitoring: It supports multiple versions of logging and monitoring when the services are deployed within the cluster (Elasticsearch/Kibana (ELK), Heapster/Grafana, Sysdig cloud integration).
      • Scalability: All-in-one framework for distributed systems.
      • Other Benefits: Kubernetes is backed by the Cloud Native Computing Foundation (CNCF), huge community among container orchestration tools, it is an open source and modular tool that works with any OS.
      See more