What is KrakenD and what are its top alternatives?
KrakenD is an open-source API gateway that helps companies simplify their architecture and improve performance by aggregating, merging, caching, and delivering requests. It offers features like load balancing, rate limiting, circuit breaking, monitoring, and authentication. However, KrakenD has limitations when handling complex routing configurations and lacks advanced security features compared to other API gateways in the market.
- Kong: Kong is a widely-used API gateway that offers features like load balancing, authentication, rate limiting, and monitoring. Pros include a large community support and extensive plugin ecosystem, while cons include complex setup and configuration.
- API Gateway: AWS API Gateway provides serverless API management, enabling developers to create, publish, maintain, monitor, and secure APIs. Pros include seamless integration with other AWS services, while cons include potentially high costs for heavy usage.
- Tyk: Tyk is an open-source API gateway that offers features like authentication, rate limiting, analytics, and developer portal. Pros include great performance and scalability, while cons include limited community support compared to other gateways.
- Apigee: Apigee is a full lifecycle API management platform that includes capabilities for design, secure, deploy, and scale APIs. Pros include easy integration with Google Cloud services, while cons include high costs for enterprise usage.
- Nginx Plus: Nginx Plus is a high-performance load balancer, web server, and reverse proxy with advanced features for API management. Pros include high performance and reliability, while cons include expensive pricing compared to open-source alternatives.
- Express Gateway: Express Gateway is a lightweight and flexible API gateway built on Node.js. Pros include easy configuration and extensibility through plugins, while cons include limited features compared to other mature gateways.
- Ambassador: Ambassador is an open-source Kubernetes-native API gateway built on Envoy Proxy. Pros include tight integration with Kubernetes and easy deployment, while cons include the learning curve for users new to Kubernetes.
- 3scale: 3scale is an API management platform that offers features like traffic control, analytics, access control, and monetization. Pros include robust API analytics and developer portal, while cons include potential high costs for enterprise usage.
- Zuul: Zuul is a JVM-based gateway developed by Netflix that provides dynamic routing, monitoring, security, and logging features. Pros include Netflix's battle-tested reliability, while cons include limited community support and customization options.
- MuleSoft Anypoint Platform: MuleSoft Anypoint Platform is a comprehensive integration platform with API management capabilities for designing, building, and managing APIs. Pros include a user-friendly interface and extensive integration possibilities, while cons include high costs for enterprise editions.
Top Alternatives to KrakenD
- Kong
Kong is a scalable, open source API Layer (also known as an API Gateway, or API Middleware). Kong controls layer 4 and 7 traffic and is extended through Plugins, which provide extra functionality and services beyond the core platform. ...
- NGINX
nginx [engine x] is an HTTP and reverse proxy server, as well as a mail proxy server, written by Igor Sysoev. According to Netcraft nginx served or proxied 30.46% of the top million busiest sites in Jan 2018. ...
- Traefik
A modern HTTP reverse proxy and load balancer that makes deploying microservices easy. Traefik integrates with your existing infrastructure components and configures itself automatically and dynamically. ...
- Gravitee.io
It is a flexible, lightweight and blazing-fast open source API Platform that helps your organization control finely who, when and how users access your APIs. ...
- Envoy
Originally built at Lyft, Envoy is a high performance C++ distributed proxy designed for single services and applications, as well as a communication bus and “universal data plane” designed for large microservice “service mesh” architectures. ...
- HAProxy
HAProxy (High Availability Proxy) is a free, very fast and reliable solution offering high availability, load balancing, and proxying for TCP and HTTP-based applications. ...
- Istio
Istio is an open platform for providing a uniform way to integrate microservices, manage traffic flow across microservices, enforce policies and aggregate telemetry data. Istio's control plane provides an abstraction layer over the underlying cluster management platform, such as Kubernetes, Mesos, etc. ...
- Ocelot
It is aimed at people using .NET running a micro services / service oriented architecture that need a unified point of entry into their system. However it will work with anything that speaks HTTP and run on any platform that ASP.NET Core supports. It manipulates the HttpRequest object into a state specified by its configuration until it reaches a request builder middleware where it creates a HttpRequestMessage object which is used to make a request to a downstream service. ...
KrakenD alternatives & related posts
- Easy to maintain37
- Easy to install32
- Flexible26
- Great performance21
- Api blueprint7
- Custom Plugins4
- Kubernetes-native3
- Security2
- Has a good plugin infrastructure2
- Agnostic2
- Load balancing1
- Documentation is clear1
- Very customizable1
related Kong posts
We needed a lightweight and completely customizable #microservices #gateway to be able to generate #JWT and introspect #OAuth2 tokens as well. The #gateway was going to front all #APIs for our single page web app as well as externalized #APIs for our partners.
ContendersWe looked at Tyk Cloud and Kong. Kong's plugins are all Lua based and its core is NGINX and OpenResty. Although it's open source, it's not the greatest platform to be able to customize. On top of that enterprise features are paid and expensive. Tyk is Go and the nomenclature used within Tyk like "sessions" was bizarre, and again enterprise features were paid.
DecisionWe ultimately decided to roll our own using ExpressJS into Express Gateway because the use case for using ExpressJS as an #API #gateway was tried and true, in fact - all the enterprise features that the other two charge for #OAuth2 introspection etc were freely available within ExpressJS middleware.
OutcomeWe opened source Express Gateway with a core set of plugins and the community started writing their own and could quickly do so by rolling lots of ExpressJS middleware into Express Gateway
NGINX
- High-performance http server1.4K
- Performance894
- Easy to configure730
- Open source607
- Load balancer530
- Free289
- Scalability288
- Web server226
- Simplicity175
- Easy setup136
- Content caching30
- Web Accelerator21
- Capability15
- Fast14
- High-latency12
- Predictability12
- Reverse Proxy8
- The best of them7
- Supports http/27
- Great Community5
- Lots of Modules5
- Enterprise version5
- High perfomance proxy server4
- Embedded Lua scripting3
- Streaming media delivery3
- Streaming media3
- Reversy Proxy3
- Blash2
- GRPC-Web2
- Lightweight2
- Fast and easy to set up2
- Slim2
- saltstack2
- Virtual hosting1
- Narrow focus. Easy to configure. Fast1
- Along with Redis Cache its the Most superior1
- Ingress controller1
- Advanced features require subscription10
related NGINX posts
Our whole DevOps stack consists of the following tools:
- GitHub (incl. GitHub Pages/Markdown for Documentation, GettingStarted and HowTo's) for collaborative review and code management tool
- Respectively Git as revision control system
- SourceTree as Git GUI
- Visual Studio Code as IDE
- CircleCI for continuous integration (automatize development process)
- Prettier / TSLint / ESLint as code linter
- SonarQube as quality gate
- Docker as container management (incl. Docker Compose for multi-container application management)
- VirtualBox for operating system simulation tests
- Kubernetes as cluster management for docker containers
- Heroku for deploying in test environments
- nginx as web server (preferably used as facade server in production environment)
- SSLMate (using OpenSSL) for certificate management
- Amazon EC2 (incl. Amazon S3) for deploying in stage (production-like) and production environments
- PostgreSQL as preferred database system
- Redis as preferred in-memory database/store (great for caching)
The main reason we have chosen Kubernetes over Docker Swarm is related to the following artifacts:
- Key features: Easy and flexible installation, Clear dashboard, Great scaling operations, Monitoring is an integral part, Great load balancing concepts, Monitors the condition and ensures compensation in the event of failure.
- Applications: An application can be deployed using a combination of pods, deployments, and services (or micro-services).
- Functionality: Kubernetes as a complex installation and setup process, but it not as limited as Docker Swarm.
- Monitoring: It supports multiple versions of logging and monitoring when the services are deployed within the cluster (Elasticsearch/Kibana (ELK), Heapster/Grafana, Sysdig cloud integration).
- Scalability: All-in-one framework for distributed systems.
- Other Benefits: Kubernetes is backed by the Cloud Native Computing Foundation (CNCF), huge community among container orchestration tools, it is an open source and modular tool that works with any OS.
We chose AWS because, at the time, it was really the only cloud provider to choose from.
We tend to use their basic building blocks (EC2, ELB, Amazon S3, Amazon RDS) rather than vendor specific components like databases and queuing. We deliberately decided to do this to ensure we could provide multi-cloud support or potentially move to another cloud provider if the offering was better for our customers.
We’ve utilized c3.large nodes for both the Node.js deployment and then for the .NET Core deployment. Both sit as backends behind an nginx instance and are managed using scaling groups in Amazon EC2 sitting behind a standard AWS Elastic Load Balancing (ELB).
While we’re satisfied with AWS, we do review our decision each year and have looked at Azure and Google Cloud offerings.
#CloudHosting #WebServers #CloudStorage #LoadBalancerReverseProxy
- Kubernetes integration20
- Watch service discovery updates18
- Letsencrypt support14
- Swarm integration13
- Several backends12
- Ready-to-use dashboard6
- Easy setup4
- Rancher integration4
- Mesos integration1
- Mantl integration1
- Complicated setup7
- Not very performant (fast)7
related Traefik posts
We switched to Traefik so we can use the REST API to dynamically configure subdomains and have the ability to redirect between multiple servers.
We still use nginx with a docker-compose to expose the traffic from our APIs and TCP microservices, but for managing routing to the internet Traefik does a much better job
The biggest win for naologic was the ability to set dynamic configurations without having to restart the server
We are looking to configure a load balancer with some admin UI. We are currently struggling to decide between NGINX, Traefik, HAProxy, and Envoy. We will use a load balancer in a containerized environment and the load balancer should flexible and easy to reload without changes in case containers are scaled up.
- Rich policy library1
- Easy deployment on OpenShoft1
- Paid service is available(beneficial in the time of p)1
- No Managed Service0
- Not Cloud Ready1
related Gravitee.io posts
related Envoy posts
We just launched the Segment Config API (try it out for yourself here) — a set of public REST APIs that enable you to manage your Segment configuration. Behind the scenes the Config API is built with Go , GRPC and Envoy.
At Segment, we build new services in Go by default. The language is simple so new team members quickly ramp up on a codebase. The tool chain is fast so developers get immediate feedback when they break code, tests or integrations with other systems. The runtime is fast so it performs great at scale.
For the newest round of APIs we adopted the GRPC service #framework.
The Protocol Buffer service definition language makes it easy to design type-safe and consistent APIs, thanks to ecosystem tools like the Google API Design Guide for API standards, uber/prototool
for formatting and linting .protos and lyft/protoc-gen-validate
for defining field validations, and grpc-gateway
for defining REST mapping.
With a well designed .proto, its easy to generate a Go server interface and a TypeScript client, providing type-safe RPC between languages.
For the API gateway and RPC we adopted the Envoy service proxy.
The internet-facing segmentapis.com
endpoint is an Envoy front proxy that rate-limits and authenticates every request. It then transcodes a #REST / #JSON request to an upstream GRPC request. The upstream GRPC servers are running an Envoy sidecar configured for Datadog stats.
The result is API #security , #reliability and consistent #observability through Envoy configuration, not code.
We experimented with Swagger service definitions, but the spec is sprawling and the generated clients and server stubs leave a lot to be desired. GRPC and .proto and the Go implementation feels better designed and implemented. Thanks to the GRPC tooling and ecosystem you can generate Swagger from .protos, but it’s effectively impossible to go the other way.
At uSwitch we wanted a way to load balance between our multiple Kubernetes clusters in AWS to give us added redundancy. We already had ingresses defined for all our applications so we wanted to build on top of that, instead of creating a new system that would require our various teams to change code/config etc.
Envoy seemed to tick a lot of boxes:
- Loadbalancing capabilities right out of the box: health checks, circuit breaking, retries etc.
- Tracing and prometheus metrics support
- Lightweight
- Good community support
This was all good but what really sold us was the api that supported dynamic configuration. This would allow us to dynamically configure envoy to route to ingresses and clusters as they were created or destroyed.
To do this we built a tool called Yggdrasil using their Go sdk. Yggdrasil effectively just creates envoy configuration from Kubernetes ingress objects, so you point Yggdrasil at your kube clusters, it generates config from the ingresses and then envoy can loadbalance between your clusters for you. This is all done dynamically so as soon as new ingress is created the envoy nodes get updated with the new config. Importantly this all worked with what we already had, no need to create new config for every application, we just put this on top of it.
- Load balancer132
- High performance102
- Very fast69
- Proxying for tcp and http58
- SSL termination55
- Open source31
- Reliable27
- Free20
- Well-Documented18
- Very popular12
- Runs health checks on backends7
- Suited for very high traffic web sites7
- Scalable6
- Ready to Docker5
- Powers many world's most visited sites4
- Simple3
- Ssl offloading2
- Work with NTLM2
- Available as a plugin for OPNsense1
- Redis1
- Becomes your single point of failure6
related HAProxy posts
Around the time of their Series A, Pinterest’s stack included Python and Django, with Tornado and Node.js as web servers. Memcached / Membase and Redis handled caching, with RabbitMQ handling queueing. Nginx, HAproxy and Varnish managed static-delivery and load-balancing, with persistent data storage handled by MySQL.
We're using Git through GitHub for public repositories and GitLab for our private repositories due to its easy to use features. Docker and Kubernetes are a must have for our highly scalable infrastructure complimented by HAProxy with Varnish in front of it. We are using a lot of npm and Visual Studio Code in our development sessions.
Istio
- Zero code for logging and monitoring14
- Service Mesh9
- Great flexibility8
- Resiliency5
- Powerful authorization mechanisms5
- Ingress controller5
- Easy integration with Kubernetes and Docker4
- Full Security4
- Performance17
related Istio posts
At my company, we are trying to move away from a monolith into microservices led architecture. We are now stuck with a problem to establish a communication mechanism between microservices. Since, we are planning to use service meshes and something like Dapr/Istio, we are not sure on how to split services between the two. Service meshes offer Traffic Routing or Splitting whereas, Dapr can offer state management and service-service invocation. At the same time both of them provide mLTS, Metrics, Resiliency and tracing. How to choose who should offer what?
As for the new support of service mesh pattern by Kong, I wonder how does it compare to Istio?
- Straightforward documentation1
- Simple configuration1