What is RapidMiner and what are its top alternatives?
RapidMiner is a powerful, user-friendly data science platform that offers a wide range of tools for data preparation, machine learning, and predictive analytics. It provides a visual workflow designer that allows users to easily build and deploy predictive models without the need for extensive coding knowledge. RapidMiner offers integration with various data sources, advanced machine learning algorithms, and automation of machine learning processes. However, some limitations of RapidMiner include its high cost for enterprise editions and the learning curve associated with its advanced features.
KNIME: KNIME is an open-source data analytics platform that allows users to create visual workflows for data blending, analysis, and machine learning. Key features include a wide range of integration options, extensive library of tools and extensions, and scalability for big data processing. Pros: Open-source with a large and active community, great scalability for big data analysis. Cons: Steeper learning curve compared to RapidMiner.
Dataiku: Dataiku is a collaborative data science platform that enables teams to explore, prototype, build, and deliver their own data products more efficiently. Key features include visual interface for data preparation and modeling, code-free machine learning, and enterprise-grade security and governance. Pros: Easy collaboration for teams, enterprise-level security features. Cons: Higher cost compared to some other tools.
Alteryx: Alteryx is a self-service data analytics platform that provides a wide range of tools for data preparation, blending, and analysis. Key features include drag-and-drop interface, in-database processing capabilities, and predictive modeling tools. Pros: User-friendly interface, strong data blending capabilities. Cons: Higher cost for enterprise editions.
Weka: Weka is a popular open-source machine learning software that provides a comprehensive set of tools for data pre-processing, classification, regression, clustering, and visualization. Key features include support for various machine learning algorithms, easy-to-use graphical user interface, and integration with Java. Pros: Free and open-source, wide variety of algorithms available. Cons: Limited scalability for big data analysis.
Orange: Orange is an open-source data visualization and analysis tool that offers a visual programming interface for data exploration, analysis, and machine learning. Key features include interactive data visualization, data pre-processing tools, and integration with Python libraries. Pros: Free and open-source, great for educational purposes. Cons: Limited advanced features compared to some other tools.
SAS Enterprise Miner: SAS Enterprise Miner is a data mining software that provides a wide range of data mining and machine learning techniques for building predictive models. Key features include automation of model building processes, integration with SAS programming language, and advanced analytics capabilities. Pros: Robust features for enterprise-level analytics, strong customer support. Cons: Higher cost compared to some other tools.
DataRobot: DataRobot is an automated machine learning platform that enables users to build, deploy, and manage machine learning models at scale. Key features include automated model selection and tuning, integration with various data sources, and interpretability of machine learning models. Pros: Automated model building saves time and resources, great for users with limited machine learning expertise. Cons: Higher cost for enterprise editions.
RStudio: RStudio is an integrated development environment for R, a popular programming language for statistical computing and graphics. Key features include code editing tools, data visualization capabilities, and integration with R packages for machine learning and data analysis. Pros: Free and open-source, extensive library of R packages available. Cons: Requires knowledge of R programming language.
Google Cloud AutoML: Google Cloud AutoML is a suite of machine learning products that enables users to build custom machine learning models without requiring deep machine learning expertise. Key features include automated data processing, model training, and deployment, as well as integration with Google Cloud services. Pros: Integration with Google Cloud infrastructure, easy-to-use interface for building custom models. Cons: Limited customization compared to some other tools.
Microsoft Azure Machine Learning: Microsoft Azure Machine Learning is a cloud-based service that enables users to build, train, and deploy machine learning models. Key features include a drag-and-drop interface for model building, integration with popular data science tools, and scalability for big data analysis. Pros: Integration with Microsoft Azure ecosystem, user-friendly interface. Cons: Integration limited to Microsoft ecosystem.
Top Alternatives to RapidMiner
- Python
Python is a general purpose programming language created by Guido Van Rossum. Python is most praised for its elegant syntax and readable code, if you are just beginning your programming career python suits you best. ...
- R Language
R provides a wide variety of statistical (linear and nonlinear modelling, classical statistical tests, time-series analysis, classification, clustering, ...) and graphical techniques, and is highly extensible. ...
- DataRobot
It is an enterprise-grade predictive analysis software for business analysts, data scientists, executives, and IT professionals. It analyzes numerous innovative machine learning algorithms to establish, implement, and build bespoke predictive models for each situation. ...
- Power BI
It aims to provide interactive visualizations and business intelligence capabilities with an interface simple enough for end users to create their own reports and dashboards. ...
- TensorFlow
TensorFlow is an open source software library for numerical computation using data flow graphs. Nodes in the graph represent mathematical operations, while the graph edges represent the multidimensional data arrays (tensors) communicated between them. The flexible architecture allows you to deploy computation to one or more CPUs or GPUs in a desktop, server, or mobile device with a single API. ...
- H2O
H2O.ai is the maker behind H2O, the leading open source machine learning platform for smarter applications and data products. H2O operationalizes data science by developing and deploying algorithms and models for R, Python and the Sparkling Water API for Spark. ...
- Tableau
Tableau can help anyone see and understand their data. Connect to almost any database, drag and drop to create visualizations, and share with a click. ...
- RStudio
An integrated development environment for R, with a console, syntax-highlighting editor that supports direct code execution. Publish and distribute data products across your organization. One button deployment of Shiny applications, R Markdown reports, Jupyter Notebooks, and more. Collections of R functions, data, and compiled code in a well-defined format. You can expand the types of analyses you do by adding packages. ...
RapidMiner alternatives & related posts
Python
- Great libraries1.2K
- Readable code962
- Beautiful code847
- Rapid development788
- Large community690
- Open source438
- Elegant393
- Great community282
- Object oriented272
- Dynamic typing220
- Great standard library77
- Very fast60
- Functional programming55
- Easy to learn49
- Scientific computing45
- Great documentation35
- Productivity29
- Easy to read28
- Matlab alternative28
- Simple is better than complex24
- It's the way I think20
- Imperative19
- Free18
- Very programmer and non-programmer friendly18
- Powerfull language17
- Machine learning support17
- Fast and simple16
- Scripting14
- Explicit is better than implicit12
- Ease of development11
- Clear and easy and powerfull10
- Unlimited power9
- It's lean and fun to code8
- Import antigravity8
- Print "life is short, use python"7
- Python has great libraries for data processing7
- Although practicality beats purity6
- Now is better than never6
- Great for tooling6
- Readability counts6
- Rapid Prototyping6
- I love snakes6
- Flat is better than nested6
- Fast coding and good for competitions6
- There should be one-- and preferably only one --obvious6
- High Documented language6
- Great for analytics5
- Lists, tuples, dictionaries5
- Easy to learn and use4
- Simple and easy to learn4
- Easy to setup and run smooth4
- Web scraping4
- CG industry needs4
- Socially engaged community4
- Complex is better than complicated4
- Multiple Inheritence4
- Beautiful is better than ugly4
- Plotting4
- Many types of collections3
- Flexible and easy3
- It is Very easy , simple and will you be love programmi3
- If the implementation is hard to explain, it's a bad id3
- Special cases aren't special enough to break the rules3
- Pip install everything3
- List comprehensions3
- No cruft3
- Generators3
- Import this3
- If the implementation is easy to explain, it may be a g3
- Can understand easily who are new to programming2
- Batteries included2
- Securit2
- Good for hacking2
- Better outcome2
- Only one way to do it2
- Because of Netflix2
- A-to-Z2
- Should START with this but not STICK with This2
- Powerful language for AI2
- Automation friendly1
- Sexy af1
- Slow1
- Procedural programming1
- Ni0
- Powerful0
- Keep it simple0
- Still divided between python 2 and python 353
- Performance impact28
- Poor syntax for anonymous functions26
- GIL22
- Package management is a mess19
- Too imperative-oriented14
- Hard to understand12
- Dynamic typing12
- Very slow12
- Indentations matter a lot8
- Not everything is expression8
- Incredibly slow7
- Explicit self parameter in methods7
- Requires C functions for dynamic modules6
- Poor DSL capabilities6
- No anonymous functions6
- Fake object-oriented programming5
- Threading5
- The "lisp style" whitespaces5
- Official documentation is unclear.5
- Hard to obfuscate5
- Circular import5
- Lack of Syntax Sugar leads to "the pyramid of doom"4
- The benevolent-dictator-for-life quit4
- Not suitable for autocomplete4
- Meta classes2
- Training wheels (forced indentation)1
related Python posts
How Uber developed the open source, end-to-end distributed tracing Jaeger , now a CNCF project:
Distributed tracing is quickly becoming a must-have component in the tools that organizations use to monitor their complex, microservice-based architectures. At Uber, our open source distributed tracing system Jaeger saw large-scale internal adoption throughout 2016, integrated into hundreds of microservices and now recording thousands of traces every second.
Here is the story of how we got here, from investigating off-the-shelf solutions like Zipkin, to why we switched from pull to push architecture, and how distributed tracing will continue to evolve:
https://eng.uber.com/distributed-tracing/
(GitHub Pages : https://www.jaegertracing.io/, GitHub: https://github.com/jaegertracing/jaeger)
Bindings/Operator: Python Java Node.js Go C++ Kubernetes JavaScript OpenShift C# Apache Spark
Winds 2.0 is an open source Podcast/RSS reader developed by Stream with a core goal to enable a wide range of developers to contribute.
We chose JavaScript because nearly every developer knows or can, at the very least, read JavaScript. With ES6 and Node.js v10.x.x, it’s become a very capable language. Async/Await is powerful and easy to use (Async/Await vs Promises). Babel allows us to experiment with next-generation JavaScript (features that are not in the official JavaScript spec yet). Yarn allows us to consistently install packages quickly (and is filled with tons of new tricks)
We’re using JavaScript for everything – both front and backend. Most of our team is experienced with Go and Python, so Node was not an obvious choice for this app.
Sure... there will be haters who refuse to acknowledge that there is anything remotely positive about JavaScript (there are even rants on Hacker News about Node.js); however, without writing completely in JavaScript, we would not have seen the results we did.
#FrameworksFullStack #Languages
R Language
- Data analysis86
- Graphics and data visualization64
- Free55
- Great community45
- Flexible statistical analysis toolkit38
- Easy packages setup27
- Access to powerful, cutting-edge analytics27
- Interactive18
- R Studio IDE13
- Hacky9
- Shiny apps7
- Shiny interactive plots6
- Preferred Medium6
- Automated data reports5
- Cutting-edge machine learning straight from researchers4
- Machine Learning3
- Graphical visualization2
- Flexible Syntax1
- Very messy syntax6
- Tables must fit in RAM4
- Arrays indices start with 13
- Messy syntax for string concatenation2
- No push command for vectors/lists2
- Messy character encoding1
- Poor syntax for classes0
- Messy syntax for array/vector combination0
related R Language posts
The algorithms and data infrastructure at Stitch Fix is housed in #AWS. Data acquisition is split between events flowing through Kafka, and periodic snapshots of PostgreSQL DBs. We store data in an Amazon S3 based data warehouse. Apache Spark on Yarn is our tool of choice for data movement and #ETL. Because our storage layer (s3) is decoupled from our processing layer, we are able to scale our compute environment very elastically. We have several semi-permanent, autoscaling Yarn clusters running to serve our data processing needs. While the bulk of our compute infrastructure is dedicated to algorithmic processing, we also implemented Presto for adhoc queries and dashboards.
Beyond data movement and ETL, most #ML centric jobs (e.g. model training and execution) run in a similarly elastic environment as containers running Python and R code on Amazon EC2 Container Service clusters. The execution of batch jobs on top of ECS is managed by Flotilla, a service we built in house and open sourced (see https://github.com/stitchfix/flotilla-os).
At Stitch Fix, algorithmic integrations are pervasive across the business. We have dozens of data products actively integrated systems. That requires serving layer that is robust, agile, flexible, and allows for self-service. Models produced on Flotilla are packaged for deployment in production using Khan, another framework we've developed internally. Khan provides our data scientists the ability to quickly productionize those models they've developed with open source frameworks in Python 3 (e.g. PyTorch, sklearn), by automatically packaging them as Docker containers and deploying to Amazon ECS. This provides our data scientist a one-click method of getting from their algorithms to production. We then integrate those deployments into a service mesh, which allows us to A/B test various implementations in our product.
For more info:
- Our Algorithms Tour: https://algorithms-tour.stitchfix.com/
- Our blog: https://multithreaded.stitchfix.com/blog/
- Careers: https://multithreaded.stitchfix.com/careers/
#DataScience #DataStack #Data
I am currently trying to learn R Language for machine learning, I already have a good knowledge of Python. What resources would you recommend to learn from as a beginner in R?
DataRobot
related DataRobot posts
- Cross-filtering18
- Database visualisation2
- Powerful Calculation Engine2
- Access from anywhere2
- Intuitive and complete internal ETL2
- Azure Based Service1
related Power BI posts
Looking for the best analytics software for a medium-large-sized firm. We currently use a Microsoft SQL Server database that is analyzed in Tableau desktop/published to Tableau online for users to access dashboards. Is it worth the cost savings/time to switch over to using SSRS or Power BI? Does anyone have experience migrating from Tableau to SSRS /or Power BI? Our other option is to consider using Tableau on-premises instead of online. Using custom SQL with over 3 million rows really decreases performances and results in processing times that greatly exceed our typical experience. Thanks.
Which among the two, Kyvos and Azure Analysis Services, should be used to build a Semantic Layer?
I have to build a Semantic Layer for the data warehouse platform and use Power BI for visualisation and the data lies in the Azure Managed Instance. I need to analyse the two platforms and find which suits best for the same.
- High Performance32
- Connect Research and Production19
- Deep Flexibility16
- Auto-Differentiation12
- True Portability11
- Easy to use6
- High level abstraction5
- Powerful5
- Hard9
- Hard to debug6
- Documentation not very helpful2
related TensorFlow posts
Google Analytics is a great tool to analyze your traffic. To debug our software and ask questions, we love to use Postman and Stack Overflow. Google Drive helps our team to share documents. We're able to build our great products through the APIs by Google Maps, CloudFlare, Stripe, PayPal, Twilio, Let's Encrypt, and TensorFlow.
Why we built an open source, distributed training framework for TensorFlow , Keras , and PyTorch:
At Uber, we apply deep learning across our business; from self-driving research to trip forecasting and fraud prevention, deep learning enables our engineers and data scientists to create better experiences for our users.
TensorFlow has become a preferred deep learning library at Uber for a variety of reasons. To start, the framework is one of the most widely used open source frameworks for deep learning, which makes it easy to onboard new users. It also combines high performance with an ability to tinker with low-level model details—for instance, we can use both high-level APIs, such as Keras, and implement our own custom operators using NVIDIA’s CUDA toolkit.
Uber has introduced Michelangelo (https://eng.uber.com/michelangelo/), an internal ML-as-a-service platform that democratizes machine learning and makes it easy to build and deploy these systems at scale. In this article, we pull back the curtain on Horovod, an open source component of Michelangelo’s deep learning toolkit which makes it easier to start—and speed up—distributed deep learning projects with TensorFlow:
(Direct GitHub repo: https://github.com/uber/horovod)
- Highly customizable2
- Very fast and powerful2
- Auto ML is amazing2
- Super easy to use2
- Not very popular1
related H2O posts
- Capable of visualising billions of rows6
- Intuitive and easy to learn1
- Responsive1
- Very expensive for small companies3
related Tableau posts
Looking for the best analytics software for a medium-large-sized firm. We currently use a Microsoft SQL Server database that is analyzed in Tableau desktop/published to Tableau online for users to access dashboards. Is it worth the cost savings/time to switch over to using SSRS or Power BI? Does anyone have experience migrating from Tableau to SSRS /or Power BI? Our other option is to consider using Tableau on-premises instead of online. Using custom SQL with over 3 million rows really decreases performances and results in processing times that greatly exceed our typical experience. Thanks.
Hello everyone,
My team and I are currently in the process of selecting a Business Intelligence (BI) tool for our actively developing company, which has over 500 employees. We are considering open-source options.
We are keen to connect with a Head of Analytics or BI Analytics professional who has extensive experience working with any of these systems and is willing to share their insights. Ideally, we would like to speak with someone from companies that have transitioned from proprietary BI tools (such as PowerBI, Qlik, or Tableau) to open-source BI tools, or vice versa.
If you have any contacts or recommendations for individuals we could reach out to regarding this matter, we would greatly appreciate it. Additionally, if you are personally willing to share your experiences, please feel free to reach out to me directly. Thank you!
RStudio
- Visual editor for R Markdown documents3
- In-line code execution using blocks2
- Can be themed1
- In-line graphing support1
- Latex support1
- Sophitiscated statistical packages1
- Supports Rcpp, python and SQL1