StackShareStackShare
Follow on
StackShare

Discover and share technology stacks from companies around the world.

Follow on

© 2025 StackShare. All rights reserved.

Product

  • Stacks
  • Tools
  • Feed

Company

  • About
  • Contact

Legal

  • Privacy Policy
  • Terms of Service
  1. Stackups
  2. Application & Data
  3. Databases
  4. Databases
  5. Amazon RDS for Aurora vs Microsoft SQL Server

Amazon RDS for Aurora vs Microsoft SQL Server

OverviewDecisionsComparisonAlternatives

Overview

Microsoft SQL Server
Microsoft SQL Server
Stacks21.3K
Followers15.5K
Votes540
Amazon Aurora
Amazon Aurora
Stacks807
Followers745
Votes55

Amazon RDS for Aurora vs Microsoft SQL Server: What are the differences?

Amazon RDS for Aurora and Microsoft SQL Server are two popular database management systems with several key differences.
  1. Performance: Amazon RDS for Aurora is designed to provide high performance and scalability, with the ability to handle millions of transactions per minute. It uses a distributed relational database architecture to achieve this, while Microsoft SQL Server is optimized for transactional workloads but may struggle with large-scale, high transaction environments.

  2. Data Replication: Aurora uses a unique storage engine that replicates six copies of data across three Availability Zones in a single region, ensuring high availability and durability. On the other hand, Microsoft SQL Server offers various replication options, such as transactional replication, merge replication, and peer-to-peer replication, but the configuration and management can be more complex.

  3. Database Engine: Aurora uses a custom-built MySQL-compatible database engine, which means it is fully compatible with MySQL applications and tools. In contrast, Microsoft SQL Server uses a different database engine, which may require some modifications to MySQL applications for migration.

  4. Pricing: Aurora's pricing model is based on a combination of database instance types and storage usage, with separate rates for read and write operations. Microsoft SQL Server, on the other hand, has a different pricing structure that includes licensing fees based on the number of cores and additional costs for features like high availability and data compression.

  5. Backup and Recovery: Aurora offers automated backup and recovery features, including continuous incremental backups and the ability to restore to any point in time within a five-minute window. Microsoft SQL Server also provides backup and recovery capabilities, but the configuration and management may require more manual intervention.

  6. Community Support: Aurora benefits from the large and active MySQL community, which provides a wealth of resources, tutorials, and documentation. Microsoft SQL Server also has a strong community support, but it may not be as extensive as the MySQL community.

In summary, Amazon RDS for Aurora offers high performance, data replication across Availability Zones, compatibility with MySQL applications, flexible pricing, automated backup and recovery, and a strong community support. On the other hand, Microsoft SQL Server provides optimization for transactional workloads, various replication options, a different pricing structure, backup and recovery capabilities, and a community support network.

Share your Stack

Help developers discover the tools you use. Get visibility for your team's tech choices and contribute to the community's knowledge.

View Docs
CLI (Node.js)
or
Manual

Advice on Microsoft SQL Server, Amazon Aurora

Erin
Erin

IT Specialist

Mar 10, 2020

Needs adviceonMicrosoft SQL ServerMicrosoft SQL ServerMySQLMySQLPostgreSQLPostgreSQL

I am a Microsoft SQL Server programmer who is a bit out of practice. I have been asked to assist on a new project. The overall purpose is to organize a large number of recordings so that they can be searched. I have an enormous music library but my songs are several hours long. I need to include things like time, date and location of the recording. I don't have a problem with the general database design. I have two primary questions:

  1. I need to use either @{MySQL}|tool:1025| or @{PostgreSQL}|tool:1028| on a @{Linux}|tool:10483| based OS. Which would be better for this application?
  2. I have not dealt with a sound based data type before. How do I store that and put it in a table? Thank you.
668k views668k
Comments

Detailed Comparison

Microsoft SQL Server
Microsoft SQL Server
Amazon Aurora
Amazon Aurora

Microsoft® SQL Server is a database management and analysis system for e-commerce, line-of-business, and data warehousing solutions.

Amazon Aurora is a MySQL-compatible, relational database engine that combines the speed and availability of high-end commercial databases with the simplicity and cost-effectiveness of open source databases. Amazon Aurora provides up to five times better performance than MySQL at a price point one tenth that of a commercial database while delivering similar performance and availability.

-
High Throughput with Low Jitter;Push-button Compute Scaling;Storage Auto-scaling;Amazon Aurora Replicas;Instance Monitoring and Repair;Fault-tolerant and Self-healing Storage;Automatic, Continuous, Incremental Backups and Point-in-time Restore;Database Snapshots;Resource-level Permissions;Easy Migration;Monitoring and Metrics
Statistics
Stacks
21.3K
Stacks
807
Followers
15.5K
Followers
745
Votes
540
Votes
55
Pros & Cons
Pros
  • 139
    Reliable and easy to use
  • 101
    High performance
  • 95
    Great with .net
  • 65
    Works well with .net
  • 56
    Easy to maintain
Cons
  • 4
    Expensive Licensing
  • 2
    Microsoft
  • 1
    The maximum number of connections is only 14000 connect
  • 1
    Replication can loose the data
  • 1
    Allwayon can loose data in asycronious mode
Pros
  • 14
    MySQL compatibility
  • 12
    Better performance
  • 10
    Easy read scalability
  • 9
    Speed
  • 7
    Low latency read replica
Cons
  • 2
    Vendor locking
  • 1
    Rigid schema
Integrations
No integrations available
PostgreSQL
PostgreSQL
MySQL
MySQL

What are some alternatives to Microsoft SQL Server, Amazon Aurora?

MongoDB

MongoDB

MongoDB stores data in JSON-like documents that can vary in structure, offering a dynamic, flexible schema. MongoDB was also designed for high availability and scalability, with built-in replication and auto-sharding.

MySQL

MySQL

The MySQL software delivers a very fast, multi-threaded, multi-user, and robust SQL (Structured Query Language) database server. MySQL Server is intended for mission-critical, heavy-load production systems as well as for embedding into mass-deployed software.

PostgreSQL

PostgreSQL

PostgreSQL is an advanced object-relational database management system that supports an extended subset of the SQL standard, including transactions, foreign keys, subqueries, triggers, user-defined types and functions.

Amazon RDS

Amazon RDS

Amazon RDS gives you access to the capabilities of a familiar MySQL, Oracle or Microsoft SQL Server database engine. This means that the code, applications, and tools you already use today with your existing databases can be used with Amazon RDS. Amazon RDS automatically patches the database software and backs up your database, storing the backups for a user-defined retention period and enabling point-in-time recovery. You benefit from the flexibility of being able to scale the compute resources or storage capacity associated with your Database Instance (DB Instance) via a single API call.

SQLite

SQLite

SQLite is an embedded SQL database engine. Unlike most other SQL databases, SQLite does not have a separate server process. SQLite reads and writes directly to ordinary disk files. A complete SQL database with multiple tables, indices, triggers, and views, is contained in a single disk file.

Cassandra

Cassandra

Partitioning means that Cassandra can distribute your data across multiple machines in an application-transparent matter. Cassandra will automatically repartition as machines are added and removed from the cluster. Row store means that like relational databases, Cassandra organizes data by rows and columns. The Cassandra Query Language (CQL) is a close relative of SQL.

Memcached

Memcached

Memcached is an in-memory key-value store for small chunks of arbitrary data (strings, objects) from results of database calls, API calls, or page rendering.

MariaDB

MariaDB

Started by core members of the original MySQL team, MariaDB actively works with outside developers to deliver the most featureful, stable, and sanely licensed open SQL server in the industry. MariaDB is designed as a drop-in replacement of MySQL(R) with more features, new storage engines, fewer bugs, and better performance.

RethinkDB

RethinkDB

RethinkDB is built to store JSON documents, and scale to multiple machines with very little effort. It has a pleasant query language that supports really useful queries like table joins and group by, and is easy to setup and learn.

ArangoDB

ArangoDB

A distributed free and open-source database with a flexible data model for documents, graphs, and key-values. Build high performance applications using a convenient SQL-like query language or JavaScript extensions.

Related Comparisons

Bootstrap
Materialize

Bootstrap vs Materialize

Laravel
Django

Django vs Laravel vs Node.js

Bootstrap
Foundation

Bootstrap vs Foundation vs Material UI

Node.js
Spring Boot

Node.js vs Spring-Boot

Liquibase
Flyway

Flyway vs Liquibase