Need advice about which tool to choose?Ask the StackShare community!

Amazon Redshift

1.5K
1.4K
+ 1
108
Citus

58
124
+ 1
11
Add tool

Amazon Redshift vs Citus: What are the differences?

What is Amazon Redshift? Fast, fully managed, petabyte-scale data warehouse service. Redshift makes it simple and cost-effective to efficiently analyze all your data using your existing business intelligence tools. It is optimized for datasets ranging from a few hundred gigabytes to a petabyte or more and costs less than $1,000 per terabyte per year, a tenth the cost of most traditional data warehousing solutions.

What is Citus? Worry-free Postgres for SaaS. Built to scale out. Citus is worry-free Postgres for SaaS. Made to scale out, Citus is an extension to Postgres that distributes queries across any number of servers. Citus is available as open source, as on-prem software, and as a fully-managed service.

Amazon Redshift belongs to "Big Data as a Service" category of the tech stack, while Citus can be primarily classified under "Databases".

Some of the features offered by Amazon Redshift are:

  • Optimized for Data Warehousing- It uses columnar storage, data compression, and zone maps to reduce the amount of IO needed to perform queries. Redshift has a massively parallel processing (MPP) architecture, parallelizing and distributing SQL operations to take advantage of all available resources.
  • Scalable- With a few clicks of the AWS Management Console or a simple API call, you can easily scale the number of nodes in your data warehouse up or down as your performance or capacity needs change.
  • No Up-Front Costs- You pay only for the resources you provision. You can choose On-Demand pricing with no up-front costs or long-term commitments, or obtain significantly discounted rates with Reserved Instance pricing.

On the other hand, Citus provides the following key features:

  • Multi-Node Scalable PostgreSQL
  • Built-in Replication and High Availability
  • Real-time Reads/Writes On Multiple Nodes

"Data Warehousing" is the primary reason why developers consider Amazon Redshift over the competitors, whereas "Multi-core Parallel Processing" was stated as the key factor in picking Citus.

Citus is an open source tool with 3.5K GitHub stars and 263 GitHub forks. Here's a link to Citus's open source repository on GitHub.

Advice on Amazon Redshift and Citus

We need to perform ETL from several databases into a data warehouse or data lake. We want to

  • keep raw and transformed data available to users to draft their own queries efficiently
  • give users the ability to give custom permissions and SSO
  • move between open-source on-premises development and cloud-based production environments

We want to use inexpensive Amazon EC2 instances only on medium-sized data set 16GB to 32GB feeding into Tableau Server or PowerBI for reporting and data analysis purposes.

See more
Replies (3)
John Nguyen
Recommends
on
AirflowAirflowAWS LambdaAWS Lambda

You could also use AWS Lambda and use Cloudwatch event schedule if you know when the function should be triggered. The benefit is that you could use any language and use the respective database client.

But if you orchestrate ETLs then it makes sense to use Apache Airflow. This requires Python knowledge.

See more
Recommends
on
AirflowAirflow

Though we have always built something custom, Apache airflow (https://airflow.apache.org/) stood out as a key contender/alternative when it comes to open sources. On the commercial offering, Amazon Redshift combined with Amazon Kinesis (for complex manipulations) is great for BI, though Redshift as such is expensive.

See more
Recommends

You may want to look into a Data Virtualization product called Conduit. It connects to disparate data sources in AWS, on prem, Azure, GCP, and exposes them as a single unified Spark SQL view to PowerBI (direct query) or Tableau. Allows auto query and caching policies to enhance query speeds and experience. Has a GPU query engine and optimized Spark for fallback. Can be deployed on your AWS VM or on prem, scales up and out. Sounds like the ideal solution to your needs.

See more
Manage your open source components, licenses, and vulnerabilities
Learn More
Pros of Amazon Redshift
Pros of Citus
  • 41
    Data Warehousing
  • 27
    Scalable
  • 17
    SQL
  • 14
    Backed by Amazon
  • 5
    Encryption
  • 1
    Cheap and reliable
  • 1
    Isolation
  • 1
    Best Cloud DW Performance
  • 1
    Fast columnar storage
  • 6
    Multi-core Parallel Processing
  • 3
    Drop-in PostgreSQL replacement
  • 2
    Distributed with Auto-Sharding

Sign up to add or upvote prosMake informed product decisions

- No public GitHub repository available -

What is Amazon Redshift?

It is optimized for data sets ranging from a few hundred gigabytes to a petabyte or more and costs less than $1,000 per terabyte per year, a tenth the cost of most traditional data warehousing solutions.

What is Citus?

It's an extension to Postgres that distributes data and queries in a cluster of multiple machines. Its query engine parallelizes incoming SQL queries across these servers to enable human real-time (less than a second) responses on large datasets.

Need advice about which tool to choose?Ask the StackShare community!

What companies use Amazon Redshift?
What companies use Citus?
Manage your open source components, licenses, and vulnerabilities
Learn More

Sign up to get full access to all the companiesMake informed product decisions

What tools integrate with Amazon Redshift?
What tools integrate with Citus?

Sign up to get full access to all the tool integrationsMake informed product decisions

Blog Posts

Jul 9 2019 at 7:22PM

Blue Medora

DockerPostgreSQLNew Relic+8
11
2384
JavaScriptGitHubPython+42
53
22216
GitHubMySQLSlack+44
109
50789
What are some alternatives to Amazon Redshift and Citus?
Google BigQuery
Run super-fast, SQL-like queries against terabytes of data in seconds, using the processing power of Google's infrastructure. Load data with ease. Bulk load your data using Google Cloud Storage or stream it in. Easy access. Access BigQuery by using a browser tool, a command-line tool, or by making calls to the BigQuery REST API with client libraries such as Java, PHP or Python.
Amazon Athena
Amazon Athena is an interactive query service that makes it easy to analyze data in Amazon S3 using standard SQL. Athena is serverless, so there is no infrastructure to manage, and you pay only for the queries that you run.
Amazon DynamoDB
With it , you can offload the administrative burden of operating and scaling a highly available distributed database cluster, while paying a low price for only what you use.
Amazon Redshift Spectrum
With Redshift Spectrum, you can extend the analytic power of Amazon Redshift beyond data stored on local disks in your data warehouse to query vast amounts of unstructured data in your Amazon S3 “data lake” -- without having to load or transform any data.
Hadoop
The Apache Hadoop software library is a framework that allows for the distributed processing of large data sets across clusters of computers using simple programming models. It is designed to scale up from single servers to thousands of machines, each offering local computation and storage.
See all alternatives