StackShareStackShare
Follow on
StackShare

Discover and share technology stacks from companies around the world.

Follow on

© 2025 StackShare. All rights reserved.

Product

  • Stacks
  • Tools
  • Feed

Company

  • About
  • Contact

Legal

  • Privacy Policy
  • Terms of Service
  1. Stackups
  2. Application & Data
  3. Databases
  4. Big Data As A Service
  5. Amazon Redshift vs Presto

Amazon Redshift vs Presto

OverviewDecisionsComparisonAlternatives

Overview

Amazon Redshift
Amazon Redshift
Stacks1.5K
Followers1.4K
Votes108
Presto
Presto
Stacks394
Followers1.0K
Votes66

Amazon Redshift vs Presto: What are the differences?

Introduction

Amazon Redshift and Presto are both popular distributed query engines used for processing big data. While they both offer powerful capabilities, there are some key differences between them that make each suitable for different use cases. In this article, we will explore the main differences between Amazon Redshift and Presto.

  1. Data Storage and Formats: One of the key differences between Amazon Redshift and Presto lies in how they store and handle data. Redshift uses a columnar storage model, which is optimized for high-performance analytics on large datasets. It also supports various data formats such as Parquet, ORC, and Avro. On the other hand, Presto is a federated query engine that can access data from multiple data sources, including Hadoop Distributed File System (HDFS), Amazon S3, and relational databases, without the need to replicate or move the data.

  2. Query Performance: Another significant difference between Redshift and Presto is their query performance characteristics. Redshift is designed for high-performance analytics on large-scale datasets, using techniques like columnar storage and advanced query optimization to deliver fast query execution times. It is a massively parallel processing (MPP) database that can scale horizontally by adding more compute nodes. In contrast, Presto is a distributed SQL query engine that offers excellent flexibility but may not achieve the same query performance as Redshift for very large datasets.

  3. Data Consistency and ACID: When it comes to data consistency and ACID (Atomicity, Consistency, Isolation, Durability) properties, there is a difference between Redshift and Presto. Redshift provides ACID compliance for data loading, updates, and deletes within a single node, ensuring transactional consistency. However, it does not provide full ACID compliance for distributed transactions across multiple nodes. On the other hand, Presto does not offer built-in support for ACID transactions, as it focuses more on enabling interactive query processing across multiple data sources.

  4. Ease of Use and Deployment: Redshift is a fully managed service provided by Amazon Web Services (AWS), which means that the deployment and management of the infrastructure are taken care of by AWS. It offers a user-friendly interface and integrates well with other AWS services. Presto, on the other hand, requires more manual configuration and setup, as it is an open-source project that needs to be deployed on a cluster. It offers more flexibility and control but may require additional technical expertise to set up and maintain.

  5. Cost and Pricing Model: Redshift operates on a pay-as-you-go model, where you pay for the compute resources and storage used. It offers various pricing options, including on-demand, reserved instances, and spot instances, allowing you to choose the most cost-effective option for your workload. Presto, being an open-source project, has no direct cost associated with it. However, you need to consider the cost of the underlying infrastructure and storage for your data sources.

  6. Ecosystem and Integration: Both Redshift and Presto have a rich ecosystem and integrate with various tools, frameworks, and data sources. Redshift integrates seamlessly with other AWS services, such as AWS Glue, AWS Data Pipeline, and AWS Athena. It also has connectors to popular BI tools and SQL clients. Presto, being a federated query engine, can access various data sources, including Hive, HDFS, MySQL, PostgreSQL, and more. It also supports integration with tools like Apache Kafka, Apache Spark, and Apache Airflow.

In summary, Amazon Redshift and Presto are both powerful distributed query engines, but they differ in terms of data storage, query performance, data consistency, ease of use, cost, and ecosystem integration. The choice between Redshift and Presto depends on the specific requirements of your use case, such as the size of the dataset, query performance needs, ACID compliance requirements, and whether you prefer a fully managed service or more hands-on control.

Share your Stack

Help developers discover the tools you use. Get visibility for your team's tech choices and contribute to the community's knowledge.

View Docs
CLI (Node.js)
or
Manual

Advice on Amazon Redshift, Presto

Ashish
Ashish

Tech Lead, Big Data Platform at Pinterest

Nov 27, 2019

Needs adviceonApache HiveApache HivePrestoPrestoAmazon EC2Amazon EC2

To provide employees with the critical need of interactive querying, we’ve worked with Presto, an open-source distributed SQL query engine, over the years. Operating Presto at Pinterest’s scale has involved resolving quite a few challenges like, supporting deeply nested and huge thrift schemas, slow/ bad worker detection and remediation, auto-scaling cluster, graceful cluster shutdown and impersonation support for ldap authenticator.

Our infrastructure is built on top of Amazon EC2 and we leverage Amazon S3 for storing our data. This separates compute and storage layers, and allows multiple compute clusters to share the S3 data.

We have hundreds of petabytes of data and tens of thousands of Apache Hive tables. Our Presto clusters are comprised of a fleet of 450 r4.8xl EC2 instances. Presto clusters together have over 100 TBs of memory and 14K vcpu cores. Within Pinterest, we have close to more than 1,000 monthly active users (out of total 1,600+ Pinterest employees) using Presto, who run about 400K queries on these clusters per month.

Each query submitted to Presto cluster is logged to a Kafka topic via Singer. Singer is a logging agent built at Pinterest and we talked about it in a previous post. Each query is logged when it is submitted and when it finishes. When a Presto cluster crashes, we will have query submitted events without corresponding query finished events. These events enable us to capture the effect of cluster crashes over time.

Each Presto cluster at Pinterest has workers on a mix of dedicated AWS EC2 instances and Kubernetes pods. Kubernetes platform provides us with the capability to add and remove workers from a Presto cluster very quickly. The best-case latency on bringing up a new worker on Kubernetes is less than a minute. However, when the Kubernetes cluster itself is out of resources and needs to scale up, it can take up to ten minutes. Some other advantages of deploying on Kubernetes platform is that our Presto deployment becomes agnostic of cloud vendor, instance types, OS, etc.

#BigData #AWS #DataScience #DataEngineering

3.72M views3.72M
Comments
datocrats-org
datocrats-org

Jul 29, 2020

Needs adviceonAmazon EC2Amazon EC2TableauTableauPowerBIPowerBI

We need to perform ETL from several databases into a data warehouse or data lake. We want to

  • keep raw and transformed data available to users to draft their own queries efficiently
  • give users the ability to give custom permissions and SSO
  • move between open-source on-premises development and cloud-based production environments

We want to use inexpensive Amazon EC2 instances only on medium-sized data set 16GB to 32GB feeding into Tableau Server or PowerBI for reporting and data analysis purposes.

319k views319k
Comments
Julien
Julien

CTO at Hawk

Sep 19, 2020

Decided

Cloud Data-warehouse is the centerpiece of modern Data platform. The choice of the most suitable solution is therefore fundamental.

Our benchmark was conducted over BigQuery and Snowflake. These solutions seem to match our goals but they have very different approaches.

BigQuery is notably the only 100% serverless cloud data-warehouse, which requires absolutely NO maintenance: no re-clustering, no compression, no index optimization, no storage management, no performance management. Snowflake requires to set up (paid) reclustering processes, to manage the performance allocated to each profile, etc. We can also mention Redshift, which we have eliminated because this technology requires even more ops operation.

BigQuery can therefore be set up with almost zero cost of human resources. Its on-demand pricing is particularly adapted to small workloads. 0 cost when the solution is not used, only pay for the query you're running. But quickly the use of slots (with monthly or per-minute commitment) will drastically reduce the cost of use. We've reduced by 10 the cost of our nightly batches by using flex slots.

Finally, a major advantage of BigQuery is its almost perfect integration with Google Cloud Platform services: Cloud functions, Dataflow, Data Studio, etc.

BigQuery is still evolving very quickly. The next milestone, BigQuery Omni, will allow to run queries over data stored in an external Cloud platform (Amazon S3 for example). It will be a major breakthrough in the history of cloud data-warehouses. Omni will compensate a weakness of BigQuery: transferring data in near real time from S3 to BQ is not easy today. It was even simpler to implement via Snowflake's Snowpipe solution.

We also plan to use the Machine Learning features built into BigQuery to accelerate our deployment of Data-Science-based projects. An opportunity only offered by the BigQuery solution

193k views193k
Comments

Detailed Comparison

Amazon Redshift
Amazon Redshift
Presto
Presto

It is optimized for data sets ranging from a few hundred gigabytes to a petabyte or more and costs less than $1,000 per terabyte per year, a tenth the cost of most traditional data warehousing solutions.

Distributed SQL Query Engine for Big Data

Optimized for Data Warehousing- It uses columnar storage, data compression, and zone maps to reduce the amount of IO needed to perform queries. Redshift has a massively parallel processing (MPP) architecture, parallelizing and distributing SQL operations to take advantage of all available resources.;Scalable- With a few clicks of the AWS Management Console or a simple API call, you can easily scale the number of nodes in your data warehouse up or down as your performance or capacity needs change.;No Up-Front Costs- You pay only for the resources you provision. You can choose On-Demand pricing with no up-front costs or long-term commitments, or obtain significantly discounted rates with Reserved Instance pricing.;Fault Tolerant- Amazon Redshift has multiple features that enhance the reliability of your data warehouse cluster. All data written to a node in your cluster is automatically replicated to other nodes within the cluster and all data is continuously backed up to Amazon S3.;SQL - Amazon Redshift is a SQL data warehouse and uses industry standard ODBC and JDBC connections and Postgres drivers.;Isolation - Amazon Redshift enables you to configure firewall rules to control network access to your data warehouse cluster.;Encryption – With just a couple of parameter settings, you can set up Amazon Redshift to use SSL to secure data in transit and hardware-acccelerated AES-256 encryption for data at rest.<br>
-
Statistics
Stacks
1.5K
Stacks
394
Followers
1.4K
Followers
1.0K
Votes
108
Votes
66
Pros & Cons
Pros
  • 41
    Data Warehousing
  • 27
    Scalable
  • 17
    SQL
  • 14
    Backed by Amazon
  • 5
    Encryption
Pros
  • 18
    Works directly on files in s3 (no ETL)
  • 13
    Open-source
  • 12
    Join multiple databases
  • 10
    Scalable
  • 7
    Gets ready in minutes
Integrations
SQLite
SQLite
MySQL
MySQL
Oracle PL/SQL
Oracle PL/SQL
PostgreSQL
PostgreSQL
Kafka
Kafka
Redis
Redis
MySQL
MySQL
Hadoop
Hadoop
Microsoft SQL Server
Microsoft SQL Server

What are some alternatives to Amazon Redshift, Presto?

Google BigQuery

Google BigQuery

Run super-fast, SQL-like queries against terabytes of data in seconds, using the processing power of Google's infrastructure. Load data with ease. Bulk load your data using Google Cloud Storage or stream it in. Easy access. Access BigQuery by using a browser tool, a command-line tool, or by making calls to the BigQuery REST API with client libraries such as Java, PHP or Python.

Apache Spark

Apache Spark

Spark is a fast and general processing engine compatible with Hadoop data. It can run in Hadoop clusters through YARN or Spark's standalone mode, and it can process data in HDFS, HBase, Cassandra, Hive, and any Hadoop InputFormat. It is designed to perform both batch processing (similar to MapReduce) and new workloads like streaming, interactive queries, and machine learning.

Qubole

Qubole

Qubole is a cloud based service that makes big data easy for analysts and data engineers.

Amazon EMR

Amazon EMR

It is used in a variety of applications, including log analysis, data warehousing, machine learning, financial analysis, scientific simulation, and bioinformatics.

Amazon Athena

Amazon Athena

Amazon Athena is an interactive query service that makes it easy to analyze data in Amazon S3 using standard SQL. Athena is serverless, so there is no infrastructure to manage, and you pay only for the queries that you run.

Apache Flink

Apache Flink

Apache Flink is an open source system for fast and versatile data analytics in clusters. Flink supports batch and streaming analytics, in one system. Analytical programs can be written in concise and elegant APIs in Java and Scala.

lakeFS

lakeFS

It is an open-source data version control system for data lakes. It provides a “Git for data” platform enabling you to implement best practices from software engineering on your data lake, including branching and merging, CI/CD, and production-like dev/test environments.

Druid

Druid

Druid is a distributed, column-oriented, real-time analytics data store that is commonly used to power exploratory dashboards in multi-tenant environments. Druid excels as a data warehousing solution for fast aggregate queries on petabyte sized data sets. Druid supports a variety of flexible filters, exact calculations, approximate algorithms, and other useful calculations.

Altiscale

Altiscale

we run Apache Hadoop for you. We not only deploy Hadoop, we monitor, manage, fix, and update it for you. Then we take it a step further: We monitor your jobs, notify you when something’s wrong with them, and can help with tuning.

Snowflake

Snowflake

Snowflake eliminates the administration and management demands of traditional data warehouses and big data platforms. Snowflake is a true data warehouse as a service running on Amazon Web Services (AWS)—no infrastructure to manage and no knobs to turn.

Related Comparisons

Bootstrap
Materialize

Bootstrap vs Materialize

Laravel
Django

Django vs Laravel vs Node.js

Bootstrap
Foundation

Bootstrap vs Foundation vs Material UI

Node.js
Spring Boot

Node.js vs Spring-Boot

Liquibase
Flyway

Flyway vs Liquibase