Clickhouse vs Elasticsearch

Need advice about which tool to choose?Ask the StackShare community!

Clickhouse

310
436
+ 1
76
Elasticsearch

31.1K
23.9K
+ 1
1.6K
Add tool

Clickhouse vs Elasticsearch: What are the differences?

What is Clickhouse? A column-oriented database management system. It allows analysis of data that is updated in real time. It offers instant results in most cases: the data is processed faster than it takes to create a query.

What is Elasticsearch? Open Source, Distributed, RESTful Search Engine. Elasticsearch is a distributed, RESTful search and analytics engine capable of storing data and searching it in near real time. Elasticsearch, Kibana, Beats and Logstash are the Elastic Stack (sometimes called the ELK Stack).

Clickhouse can be classified as a tool in the "Databases" category, while Elasticsearch is grouped under "Search as a Service".

Elasticsearch is an open source tool with 42.4K GitHub stars and 14.2K GitHub forks. Here's a link to Elasticsearch's open source repository on GitHub.

Advice on Clickhouse and Elasticsearch
Rana Usman Shahid
Chief Technology Officer at TechAvanza · | 6 upvotes · 276.5K views
Needs advice
on
AlgoliaAlgoliaElasticsearchElasticsearch
and
FirebaseFirebase

Hey everybody! (1) I am developing an android application. I have data of around 3 million record (less than a TB). I want to save that data in the cloud. Which company provides the best cloud database services that would suit my scenario? It should be secured, long term useable, and provide better services. I decided to use Firebase Realtime database. Should I stick with Firebase or are there any other companies that provide a better service?

(2) I have the functionality of searching data in my app. Same data (less than a TB). Which search solution should I use in this case? I found Elasticsearch and Algolia search. It should be secure and fast. If any other company provides better services than these, please feel free to suggest them.

Thank you!

See more
Replies (2)
Josh Dzielak
Co-Founder & CTO at Orbit · | 8 upvotes · 201.6K views
Recommends
AlgoliaAlgolia

Hi Rana, good question! From my Firebase experience, 3 million records is not too big at all, as long as the cost is within reason for you. With Firebase you will be able to access the data from anywhere, including an android app, and implement fine-grained security with JSON rules. The real-time-ness works perfectly. As a fully managed database, Firebase really takes care of everything. The only thing to watch out for is if you need complex query patterns - Firestore (also in the Firebase family) can be a better fit there.

To answer question 2: the right answer will depend on what's most important to you. Algolia is like Firebase is that it is fully-managed, very easy to set up, and has great SDKs for Android. Algolia is really a full-stack search solution in this case, and it is easy to connect with your Firebase data. Bear in mind that Algolia does cost money, so you'll want to make sure the cost is okay for you, but you will save a lot of engineering time and never have to worry about scale. The search-as-you-type performance with Algolia is flawless, as that is a primary aspect of its design. Elasticsearch can store tons of data and has all the flexibility, is hosted for cheap by many cloud services, and has many users. If you haven't done a lot with search before, the learning curve is higher than Algolia for getting the results ranked properly, and there is another learning curve if you want to do the DevOps part yourself. Both are very good platforms for search, Algolia shines when buliding your app is the most important and you don't want to spend many engineering hours, Elasticsearch shines when you have a lot of data and don't mind learning how to run and optimize it.

See more
Mike Endale
Recommends
Cloud FirestoreCloud Firestore

Rana - we use Cloud Firestore at our startup. It handles many million records without any issues. It provides you the same set of features that the Firebase Realtime Database provides on top of the indexing and security trims. The only thing to watch out for is to make sure your Cloud Functions have proper exception handling and there are no infinite loop in the code. This will be too costly if not caught quickly.

For search; Algolia is a great option, but cost is a real consideration. Indexing large number of records can be cost prohibitive for most projects. Elasticsearch is a solid alternative, but requires a little additional work to configure and maintain if you want to self-host.

Hope this helps.

See more
Get Advice from developers at your company using StackShare Enterprise. Sign up for StackShare Enterprise.
Learn More
Pros of Clickhouse
Pros of Elasticsearch
  • 19
    Fast, very very fast
  • 11
    Good compression ratio
  • 6
    Horizontally scalable
  • 5
    Utilizes all CPU resources
  • 5
    RESTful
  • 5
    Great CLI
  • 4
    Open-source
  • 4
    Great number of SQL functions
  • 3
    Buggy
  • 3
    Has no transactions
  • 2
    Flexible compression options
  • 2
    Flexible connection options
  • 2
    ODBC
  • 2
    Server crashes its normal :(
  • 2
    Highly available
  • 1
    In IDEA data import via HTTP interface not working
  • 323
    Powerful api
  • 314
    Great search engine
  • 230
    Open source
  • 214
    Restful
  • 199
    Near real-time search
  • 96
    Free
  • 83
    Search everything
  • 54
    Easy to get started
  • 45
    Analytics
  • 26
    Distributed
  • 6
    Fast search
  • 5
    More than a search engine
  • 3
    Easy to scale
  • 3
    Awesome, great tool
  • 3
    Great docs
  • 2
    Potato
  • 2
    Document Store
  • 2
    Great customer support
  • 2
    Intuitive API
  • 2
    Reliable
  • 2
    Nosql DB
  • 2
    Fast
  • 2
    Easy setup
  • 2
    Highly Available
  • 2
    Great piece of software
  • 1
    Ecosystem
  • 1
    Scalability
  • 1
    Not stable
  • 1
    Github
  • 1
    Elaticsearch
  • 1
    Actively developing
  • 1
    Responsive maintainers on GitHub
  • 1
    Easy to get hot data
  • 1
    Open
  • 0
    Community

Sign up to add or upvote prosMake informed product decisions

Cons of Clickhouse
Cons of Elasticsearch
  • 5
    Slow insert operations
  • 7
    Resource hungry
  • 6
    Diffecult to get started
  • 5
    Expensive
  • 4
    Hard to keep stable at large scale

Sign up to add or upvote consMake informed product decisions

What is Clickhouse?

It allows analysis of data that is updated in real time. It offers instant results in most cases: the data is processed faster than it takes to create a query.

What is Elasticsearch?

Elasticsearch is a distributed, RESTful search and analytics engine capable of storing data and searching it in near real time. Elasticsearch, Kibana, Beats and Logstash are the Elastic Stack (sometimes called the ELK Stack).

Need advice about which tool to choose?Ask the StackShare community!

What companies use Clickhouse?
What companies use Elasticsearch?
See which teams inside your own company are using Clickhouse or Elasticsearch.
Sign up for StackShare EnterpriseLearn More

Sign up to get full access to all the companiesMake informed product decisions

What tools integrate with Clickhouse?
What tools integrate with Elasticsearch?

Sign up to get full access to all the tool integrationsMake informed product decisions

Blog Posts

May 21 2019 at 12:20AM

Elastic

ElasticsearchKibanaLogstash+4
12
4341
GitHubPythonReact+42
48
40071
GitHubPythonNode.js+47
53
70944
What are some alternatives to Clickhouse and Elasticsearch?
Cassandra
Partitioning means that Cassandra can distribute your data across multiple machines in an application-transparent matter. Cassandra will automatically repartition as machines are added and removed from the cluster. Row store means that like relational databases, Cassandra organizes data by rows and columns. The Cassandra Query Language (CQL) is a close relative of SQL.
MySQL
The MySQL software delivers a very fast, multi-threaded, multi-user, and robust SQL (Structured Query Language) database server. MySQL Server is intended for mission-critical, heavy-load production systems as well as for embedding into mass-deployed software.
InfluxDB
InfluxDB is a scalable datastore for metrics, events, and real-time analytics. It has a built-in HTTP API so you don't have to write any server side code to get up and running. InfluxDB is designed to be scalable, simple to install and manage, and fast to get data in and out.
Druid
Druid is a distributed, column-oriented, real-time analytics data store that is commonly used to power exploratory dashboards in multi-tenant environments. Druid excels as a data warehousing solution for fast aggregate queries on petabyte sized data sets. Druid supports a variety of flexible filters, exact calculations, approximate algorithms, and other useful calculations.
MongoDB
MongoDB stores data in JSON-like documents that can vary in structure, offering a dynamic, flexible schema. MongoDB was also designed for high availability and scalability, with built-in replication and auto-sharding.
See all alternatives