StackShareStackShare
Follow on
StackShare

Discover and share technology stacks from companies around the world.

Follow on

© 2025 StackShare. All rights reserved.

Product

  • Stacks
  • Tools
  • Feed

Company

  • About
  • Contact

Legal

  • Privacy Policy
  • Terms of Service
  1. Stackups
  2. Utilities
  3. Background Jobs
  4. Message Queue
  5. CuPy vs StreamSets

CuPy vs StreamSets

OverviewComparisonAlternatives

Overview

StreamSets
StreamSets
Stacks53
Followers133
Votes0
CuPy
CuPy
Stacks8
Followers27
Votes0
GitHub Stars10.6K
Forks967

StreamSets vs CuPy: What are the differences?

StreamSets: Where DevOps Meets Data Integration. The industry's first data operations platform for full life-cycle management of data in motion; CuPy: A NumPy-compatible matrix library accelerated by CUDA. It is an open-source matrix library accelerated with NVIDIA CUDA. CuPy provides GPU accelerated computing with Python. It uses CUDA-related libraries including cuBLAS, cuDNN, cuRand, cuSolver, cuSPARSE, cuFFT and NCCL to make full use of the GPU architecture.

StreamSets and CuPy are primarily classified as "Message Queue" and "Data Science" tools respectively.

Some of the features offered by StreamSets are:

  • Build Batch & Streaming Pipelines in Hours
  • Map and Monitor Runtime Performance
  • Protect Sensitive Data as it Arrives

On the other hand, CuPy provides the following key features:

  • It's interface is highly compatible with NumPy in most cases it can be used as a drop-in replacement
  • Supports various methods, indexing, data types, broadcasting and more
  • You can easily make a custom CUDA kernel if you want to make your code run faster, requiring only a small code snippet of C++

CuPy is an open source tool with 4.14K GitHub stars and 373 GitHub forks. Here's a link to CuPy's open source repository on GitHub.

Share your Stack

Help developers discover the tools you use. Get visibility for your team's tech choices and contribute to the community's knowledge.

View Docs
CLI (Node.js)
or
Manual

Detailed Comparison

StreamSets
StreamSets
CuPy
CuPy

An end-to-end data integration platform to build, run, monitor and manage smart data pipelines that deliver continuous data for DataOps.

It is an open-source matrix library accelerated with NVIDIA CUDA. CuPy provides GPU accelerated computing with Python. It uses CUDA-related libraries including cuBLAS, cuDNN, cuRand, cuSolver, cuSPARSE, cuFFT and NCCL to make full use of the GPU architecture.

Only StreamSets provides a single design experience for all design patterns (batch, streaming, CDC, ETL, ELT, and ML pipelines) for 10x greater developer productivity; smart data pipelines that are resilient to change for 80% less breakages; and a single pane of glass for managing and monitoring all pipelines across hybrid and cloud architectures to eliminate blind spots and control gaps.
It's interface is highly compatible with NumPy in most cases it can be used as a drop-in replacement; Supports various methods, indexing, data types, broadcasting and more; You can easily make a custom CUDA kernel if you want to make your code run faster, requiring only a small code snippet of C++; It automatically wraps and compiles it to make a CUDA binary; Compiled binaries are cached and reused in subsequent runs
Statistics
GitHub Stars
-
GitHub Stars
10.6K
GitHub Forks
-
GitHub Forks
967
Stacks
53
Stacks
8
Followers
133
Followers
27
Votes
0
Votes
0
Pros & Cons
Cons
  • 2
    No user community
  • 1
    Crashes
No community feedback yet
Integrations
HBase
HBase
Databricks
Databricks
Amazon Redshift
Amazon Redshift
MySQL
MySQL
gRPC
gRPC
Google BigQuery
Google BigQuery
Amazon Kinesis
Amazon Kinesis
Cassandra
Cassandra
Hadoop
Hadoop
Redis
Redis
NumPy
NumPy
CUDA
CUDA

What are some alternatives to StreamSets, CuPy?

Kafka

Kafka

Kafka is a distributed, partitioned, replicated commit log service. It provides the functionality of a messaging system, but with a unique design.

RabbitMQ

RabbitMQ

RabbitMQ gives your applications a common platform to send and receive messages, and your messages a safe place to live until received.

Celery

Celery

Celery is an asynchronous task queue/job queue based on distributed message passing. It is focused on real-time operation, but supports scheduling as well.

Amazon SQS

Amazon SQS

Transmit any volume of data, at any level of throughput, without losing messages or requiring other services to be always available. With SQS, you can offload the administrative burden of operating and scaling a highly available messaging cluster, while paying a low price for only what you use.

NSQ

NSQ

NSQ is a realtime distributed messaging platform designed to operate at scale, handling billions of messages per day. It promotes distributed and decentralized topologies without single points of failure, enabling fault tolerance and high availability coupled with a reliable message delivery guarantee. See features & guarantees.

Apache Spark

Apache Spark

Spark is a fast and general processing engine compatible with Hadoop data. It can run in Hadoop clusters through YARN or Spark's standalone mode, and it can process data in HDFS, HBase, Cassandra, Hive, and any Hadoop InputFormat. It is designed to perform both batch processing (similar to MapReduce) and new workloads like streaming, interactive queries, and machine learning.

ActiveMQ

ActiveMQ

Apache ActiveMQ is fast, supports many Cross Language Clients and Protocols, comes with easy to use Enterprise Integration Patterns and many advanced features while fully supporting JMS 1.1 and J2EE 1.4. Apache ActiveMQ is released under the Apache 2.0 License.

ZeroMQ

ZeroMQ

The 0MQ lightweight messaging kernel is a library which extends the standard socket interfaces with features traditionally provided by specialised messaging middleware products. 0MQ sockets provide an abstraction of asynchronous message queues, multiple messaging patterns, message filtering (subscriptions), seamless access to multiple transport protocols and more.

Presto

Presto

Distributed SQL Query Engine for Big Data

Apache NiFi

Apache NiFi

An easy to use, powerful, and reliable system to process and distribute data. It supports powerful and scalable directed graphs of data routing, transformation, and system mediation logic.

Related Comparisons

Bootstrap
Materialize

Bootstrap vs Materialize

Laravel
Django

Django vs Laravel vs Node.js

Bootstrap
Foundation

Bootstrap vs Foundation vs Material UI

Node.js
Spring Boot

Node.js vs Spring-Boot

Liquibase
Flyway

Flyway vs Liquibase