StackShareStackShare
Follow on
StackShare

Discover and share technology stacks from companies around the world.

Follow on

© 2025 StackShare. All rights reserved.

Product

  • Stacks
  • Tools
  • Feed

Company

  • About
  • Contact

Legal

  • Privacy Policy
  • Terms of Service
  1. Stackups
  2. DevOps
  3. Monitoring
  4. Monitoring Tools
  5. Druid vs Prometheus

Druid vs Prometheus

OverviewDecisionsComparisonAlternatives

Overview

Prometheus
Prometheus
Stacks4.8K
Followers3.8K
Votes239
GitHub Stars61.1K
Forks9.9K
Druid
Druid
Stacks376
Followers867
Votes32

Druid vs Prometheus: What are the differences?

Key Differences between Druid and Prometheus

Druid and Prometheus are both open-source data storage and analytics platforms, but they have some key differences in terms of architecture, query capabilities, data model, and scaling. The following are the main differences between Druid and Prometheus:

  1. Data Model: Druid is designed for OLAP (Online Analytical Processing) workloads and stores data in a columnar format optimized for fast analytics. It uses a segmented architecture, where data is divided into time-based chunks for efficient queries. Prometheus, on the other hand, is designed for real-time monitoring and stores data in a time-series format.

  2. Query Capabilities: Druid supports complex analytical queries, such as filtering, aggregations, grouping, and joins, making it suitable for interactive exploratory analysis. It also provides sub-second query response times. Prometheus, on the other hand, focuses on monitoring and alerting, providing querying capabilities for time-series data, including range queries and aggregations.

  3. Data Ingestion: Druid provides a scalable, distributed real-time ingestion framework called Tranquility, which allows streaming data to be ingested into Druid clusters. It can handle high-throughput data ingestion from various sources. Prometheus is primarily designed for pull-based scraping, where it regularly fetches metrics from target systems using HTTP. It supports a range of integrations with different monitoring systems.

  4. Scalability: Druid is built to scale horizontally and can handle large volumes of data by distributing it across multiple nodes. It supports automatic data sharding and replication for high availability. Prometheus, on the other hand, can be vertically scaled by adding more resources to a single instance or federated with multiple Prometheus servers for distributed monitoring.

  5. Data Retention: Druid provides configurable data retention policies, allowing users to define how long data should be retained in the system. It also supports data compaction to reduce storage requirements. Prometheus has a fixed retention period for metrics data, which can be configured but is typically limited to a few weeks or months.

  6. Ecosystem Integration: Druid integrates well with other big data ecosystem tools such as Apache Hadoop, Apache Spark, and Apache Kafka, making it suitable for building end-to-end data pipelines. Prometheus, on the other hand, has a rich ecosystem of exporters, plugins, and alerting integrations that make it easy to integrate with various monitoring systems and tools.

In summary, Druid is optimized for OLAP analytics, supports complex queries, and provides scalable ingestion and data retention capabilities. Prometheus, on the other hand, is focused on real-time monitoring, offers flexible querying for time-series data, and has a rich ecosystem of integrations for monitoring and alerting.

Share your Stack

Help developers discover the tools you use. Get visibility for your team's tech choices and contribute to the community's knowledge.

View Docs
CLI (Node.js)
or
Manual

Advice on Prometheus, Druid

Raja Subramaniam
Raja Subramaniam

Aug 27, 2019

Needs adviceonPrometheusPrometheusKubernetesKubernetesSysdigSysdig

We have Prometheus as a monitoring engine as a part of our stack which contains Kubernetes cluster, container images and other open source tools. Also, I am aware that Sysdig can be integrated with Prometheus but I really wanted to know whether Sysdig or sysdig+prometheus will make better monitoring solution.

779k views779k
Comments
Susmita
Susmita

Senior SRE at African Bank

Jul 28, 2020

Needs adviceonGrafanaGrafana

Looking for a tool which can be used for mainly dashboard purposes, but here are the main requirements:

  • Must be able to get custom data from AS400,
  • Able to display automation test results,
  • System monitoring / Nginx API,
  • Able to get data from 3rd parties DB.

Grafana is almost solving all the problems, except AS400 and no database to get automation test results.

869k views869k
Comments
Mat
Mat

Head of Cloud at Mats Cloud

Oct 30, 2019

Needs advice

We're looking for a Monitoring and Logging tool. It has to support AWS (mostly 100% serverless, Lambdas, SNS, SQS, API GW, CloudFront, Autora, etc.), as well as Azure and GCP (for now mostly used as pure IaaS, with a lot of cognitive services, and mostly managed DB). Hopefully, something not as expensive as Datadog or New relic, as our SRE team could support the tool inhouse. At the moment, we primarily use CloudWatch for AWS and Pandora for most on-prem.

794k views794k
Comments

Detailed Comparison

Prometheus
Prometheus
Druid
Druid

Prometheus is a systems and service monitoring system. It collects metrics from configured targets at given intervals, evaluates rule expressions, displays the results, and can trigger alerts if some condition is observed to be true.

Druid is a distributed, column-oriented, real-time analytics data store that is commonly used to power exploratory dashboards in multi-tenant environments. Druid excels as a data warehousing solution for fast aggregate queries on petabyte sized data sets. Druid supports a variety of flexible filters, exact calculations, approximate algorithms, and other useful calculations.

Dimensional data; Powerful queries; Great visualization; Efficient storage; Precise alerting; Simple operation
-
Statistics
GitHub Stars
61.1K
GitHub Stars
-
GitHub Forks
9.9K
GitHub Forks
-
Stacks
4.8K
Stacks
376
Followers
3.8K
Followers
867
Votes
239
Votes
32
Pros & Cons
Pros
  • 47
    Powerful easy to use monitoring
  • 38
    Flexible query language
  • 32
    Dimensional data model
  • 27
    Alerts
  • 23
    Active and responsive community
Cons
  • 12
    Just for metrics
  • 6
    Bad UI
  • 6
    Needs monitoring to access metrics endpoints
  • 4
    Not easy to configure and use
  • 3
    Supports only active agents
Pros
  • 15
    Real Time Aggregations
  • 6
    Batch and Real-Time Ingestion
  • 5
    OLAP
  • 3
    OLAP + OLTP
  • 2
    Combining stream and historical analytics
Cons
  • 3
    Limited sql support
  • 2
    Joins are not supported well
  • 1
    Complexity
Integrations
Grafana
Grafana
Zookeeper
Zookeeper

What are some alternatives to Prometheus, Druid?

Grafana

Grafana

Grafana is a general purpose dashboard and graph composer. It's focused on providing rich ways to visualize time series metrics, mainly though graphs but supports other ways to visualize data through a pluggable panel architecture. It currently has rich support for for Graphite, InfluxDB and OpenTSDB. But supports other data sources via plugins.

Kibana

Kibana

Kibana is an open source (Apache Licensed), browser based analytics and search dashboard for Elasticsearch. Kibana is a snap to setup and start using. Kibana strives to be easy to get started with, while also being flexible and powerful, just like Elasticsearch.

Apache Spark

Apache Spark

Spark is a fast and general processing engine compatible with Hadoop data. It can run in Hadoop clusters through YARN or Spark's standalone mode, and it can process data in HDFS, HBase, Cassandra, Hive, and any Hadoop InputFormat. It is designed to perform both batch processing (similar to MapReduce) and new workloads like streaming, interactive queries, and machine learning.

Nagios

Nagios

Nagios is a host/service/network monitoring program written in C and released under the GNU General Public License.

Netdata

Netdata

Netdata collects metrics per second & presents them in low-latency dashboards. It's designed to run on all of your physical & virtual servers, cloud deployments, Kubernetes clusters & edge/IoT devices, to monitor systems, containers & apps

Zabbix

Zabbix

Zabbix is a mature and effortless enterprise-class open source monitoring solution for network monitoring and application monitoring of millions of metrics.

Presto

Presto

Distributed SQL Query Engine for Big Data

Sensu

Sensu

Sensu is the future-proof solution for multi-cloud monitoring at scale. The Sensu monitoring event pipeline empowers businesses to automate their monitoring workflows and gain deep visibility into their multi-cloud environments.

Amazon Athena

Amazon Athena

Amazon Athena is an interactive query service that makes it easy to analyze data in Amazon S3 using standard SQL. Athena is serverless, so there is no infrastructure to manage, and you pay only for the queries that you run.

Graphite

Graphite

Graphite does two things: 1) Store numeric time-series data and 2) Render graphs of this data on demand

Related Comparisons

GitHub
Bitbucket

Bitbucket vs GitHub vs GitLab

Bootstrap
Materialize

Bootstrap vs Materialize

Laravel
Django

Django vs Laravel vs Node.js

Bootstrap
Foundation

Bootstrap vs Foundation vs Material UI

Node.js
Spring Boot

Node.js vs Spring-Boot