Alternatives to Prometheus logo

Alternatives to Prometheus

Datadog, Grafana, New Relic, InfluxDB, and Splunk are the most popular alternatives and competitors to Prometheus.
4.3K
3.8K
+ 1
239

What is Prometheus and what are its top alternatives?

Prometheus is an open-source monitoring and alerting toolkit designed for reliability and scalability of systems. It enables users to collect metrics from diverse sources, store them efficiently, and allow for querying and creating alerts based on those metrics. However, one limitation of Prometheus is its lack of long-term storage capabilities, which can be challenging for historical data analysis.

  1. Grafana: Grafana is a leading open-source visualization tool that can be integrated with various data sources including Prometheus. Key features include customizable dashboards, alerting, and extensive plugin support. Pros include a user-friendly interface and a wide community support, while cons involve a steeper learning curve compared to other tools.
  2. InfluxDB: InfluxDB is a time-series database that can be used as a data source for monitoring systems. It offers efficient data ingestion, query language, and horizontal scalability. Pros include easy integration with Grafana and Telegraf, while cons involve limitations in clustering capabilities.
  3. Prometheus Operator: Prometheus Operator is a Kubernetes native tool that simplifies the deployment and management of Prometheus instances on Kubernetes clusters. Key features include automatic configuration and scaling, but it may require expertise in Kubernetes for setup and maintenance.
  4. Zabbix: Zabbix is a mature monitoring solution that offers features such as auto-discovery, real-time monitoring, and rich visualization options. Pros include high scalability and a wide range of out-of-the-box monitoring capabilities, while cons involve a complex setup process.
  5. Thanos: Thanos is a platform designed to expand Prometheus capabilities for long-term storage and high availability. It offers features like global querying, compaction, and data deduplication. Pros include seamless integration with existing Prometheus setups, but cons involve potential complexity in configuring the setup.
  6. Netdata: Netdata is a real-time monitoring, troubleshooting, and alerting tool that provides insights into system performance. Key features include a user-friendly interface, extensive metrics collection, and easy installation. Pros include a vast array of integrations and an active community, while cons involve potential resource usage on monitored systems.
  7. Elasticsearch with Beats: Elasticsearch, combined with Beats for data shipping, can be used for log monitoring and analysis similar to Prometheus for metrics. It offers scalability, advanced search capabilities, and a wide range of integrations. Pros include rich data visualization options with Kibana, while cons involve potential complexity in configuration.
  8. Sysdig: Sysdig offers a monitoring and security platform for containers and cloud-native applications. It features real-time visibility, troubleshooting capabilities, and security monitoring. Pros include comprehensive container monitoring features, while cons involve a higher cost compared to other tools.
  9. New Relic: New Relic is a cloud-based observability platform that provides end-to-end visibility into application performance and infrastructure. Key features include application monitoring, infrastructure monitoring, and real-user monitoring. Pros include easy setup and a wide array of integrations, while cons involve potential cost implications for larger setups.
  10. OpenTelemetry: OpenTelemetry is an open-source observability framework that allows for collecting telemetry data from applications, microservices, and infrastructure. It offers flexibility in integrations, support for various languages, and community-driven development. Pros include vendor-neutral standards and easy instrumentation, while cons involve potential complexity in setting up the entire stack.

Top Alternatives to Prometheus

  • Datadog
    Datadog

    Datadog is the leading service for cloud-scale monitoring. It is used by IT, operations, and development teams who build and operate applications that run on dynamic or hybrid cloud infrastructure. Start monitoring in minutes with Datadog! ...

  • Grafana
    Grafana

    Grafana is a general purpose dashboard and graph composer. It's focused on providing rich ways to visualize time series metrics, mainly though graphs but supports other ways to visualize data through a pluggable panel architecture. It currently has rich support for for Graphite, InfluxDB and OpenTSDB. But supports other data sources via plugins. ...

  • New Relic
    New Relic

    The world’s best software and DevOps teams rely on New Relic to move faster, make better decisions and create best-in-class digital experiences. If you run software, you need to run New Relic. More than 50% of the Fortune 100 do too. ...

  • InfluxDB
    InfluxDB

    InfluxDB is a scalable datastore for metrics, events, and real-time analytics. It has a built-in HTTP API so you don't have to write any server side code to get up and running. InfluxDB is designed to be scalable, simple to install and manage, and fast to get data in and out. ...

  • Splunk
    Splunk

    It provides the leading platform for Operational Intelligence. Customers use it to search, monitor, analyze and visualize machine data. ...

  • Graphite
    Graphite

    Graphite does two things: 1) Store numeric time-series data and 2) Render graphs of this data on demand ...

  • Zabbix
    Zabbix

    Zabbix is a mature and effortless enterprise-class open source monitoring solution for network monitoring and application monitoring of millions of metrics. ...

  • AppDynamics
    AppDynamics

    AppDynamics develops application performance management (APM) solutions that deliver problem resolution for highly distributed applications through transaction flow monitoring and deep diagnostics. ...

Prometheus alternatives & related posts

Datadog logo

Datadog

9.3K
8K
860
Unify logs, metrics, and traces from across your distributed infrastructure.
9.3K
8K
+ 1
860
PROS OF DATADOG
  • 139
    Monitoring for many apps (databases, web servers, etc)
  • 107
    Easy setup
  • 87
    Powerful ui
  • 84
    Powerful integrations
  • 70
    Great value
  • 54
    Great visualization
  • 46
    Events + metrics = clarity
  • 41
    Notifications
  • 41
    Custom metrics
  • 39
    Flexibility
  • 19
    Free & paid plans
  • 16
    Great customer support
  • 15
    Makes my life easier
  • 10
    Adapts automatically as i scale up
  • 9
    Easy setup and plugins
  • 8
    Super easy and powerful
  • 7
    In-context collaboration
  • 7
    AWS support
  • 6
    Rich in features
  • 5
    Docker support
  • 4
    Cute logo
  • 4
    Source control and bug tracking
  • 4
    Monitor almost everything
  • 4
    Cost
  • 4
    Full visibility of applications
  • 4
    Simple, powerful, great for infra
  • 4
    Easy to Analyze
  • 4
    Best than others
  • 4
    Automation tools
  • 3
    Best in the field
  • 3
    Free setup
  • 3
    Good for Startups
  • 3
    Expensive
  • 2
    APM
CONS OF DATADOG
  • 19
    Expensive
  • 4
    No errors exception tracking
  • 2
    External Network Goes Down You Wont Be Logging
  • 1
    Complicated

related Datadog posts

Noah Zoschke
Engineering Manager at Segment · | 30 upvotes · 298.3K views

We just launched the Segment Config API (try it out for yourself here) — a set of public REST APIs that enable you to manage your Segment configuration. Behind the scenes the Config API is built with Go , GRPC and Envoy.

At Segment, we build new services in Go by default. The language is simple so new team members quickly ramp up on a codebase. The tool chain is fast so developers get immediate feedback when they break code, tests or integrations with other systems. The runtime is fast so it performs great at scale.

For the newest round of APIs we adopted the GRPC service #framework.

The Protocol Buffer service definition language makes it easy to design type-safe and consistent APIs, thanks to ecosystem tools like the Google API Design Guide for API standards, uber/prototool for formatting and linting .protos and lyft/protoc-gen-validate for defining field validations, and grpc-gateway for defining REST mapping.

With a well designed .proto, its easy to generate a Go server interface and a TypeScript client, providing type-safe RPC between languages.

For the API gateway and RPC we adopted the Envoy service proxy.

The internet-facing segmentapis.com endpoint is an Envoy front proxy that rate-limits and authenticates every request. It then transcodes a #REST / #JSON request to an upstream GRPC request. The upstream GRPC servers are running an Envoy sidecar configured for Datadog stats.

The result is API #security , #reliability and consistent #observability through Envoy configuration, not code.

We experimented with Swagger service definitions, but the spec is sprawling and the generated clients and server stubs leave a lot to be desired. GRPC and .proto and the Go implementation feels better designed and implemented. Thanks to the GRPC tooling and ecosystem you can generate Swagger from .protos, but it’s effectively impossible to go the other way.

See more
Robert Zuber

Our primary source of monitoring and alerting is Datadog. We’ve got prebuilt dashboards for every scenario and integration with PagerDuty to manage routing any alerts. We’ve definitely scaled past the point where managing dashboards is easy, but we haven’t had time to invest in using features like Anomaly Detection. We’ve started using Honeycomb for some targeted debugging of complex production issues and we are liking what we’ve seen. We capture any unhandled exceptions with Rollbar and, if we realize one will keep happening, we quickly convert the metrics to point back to Datadog, to keep Rollbar as clean as possible.

We use Segment to consolidate all of our trackers, the most important of which goes to Amplitude to analyze user patterns. However, if we need a more consolidated view, we push all of our data to our own data warehouse running PostgreSQL; this is available for analytics and dashboard creation through Looker.

See more
Grafana logo

Grafana

17.8K
14.2K
415
Open source Graphite & InfluxDB Dashboard and Graph Editor
17.8K
14.2K
+ 1
415
PROS OF GRAFANA
  • 89
    Beautiful
  • 68
    Graphs are interactive
  • 57
    Free
  • 56
    Easy
  • 34
    Nicer than the Graphite web interface
  • 26
    Many integrations
  • 18
    Can build dashboards
  • 10
    Easy to specify time window
  • 10
    Can collaborate on dashboards
  • 9
    Dashboards contain number tiles
  • 5
    Open Source
  • 5
    Integration with InfluxDB
  • 5
    Click and drag to zoom in
  • 4
    Authentification and users management
  • 4
    Threshold limits in graphs
  • 3
    Alerts
  • 3
    It is open to cloud watch and many database
  • 3
    Simple and native support to Prometheus
  • 2
    Great community support
  • 2
    You can use this for development to check memcache
  • 2
    You can visualize real time data to put alerts
  • 0
    Grapsh as code
  • 0
    Plugin visualizationa
CONS OF GRAFANA
  • 1
    No interactive query builder

related Grafana posts

Matt Menzenski
Senior Software Engineering Manager at PayIt · | 16 upvotes · 1M views

Grafana and Prometheus together, running on Kubernetes , is a powerful combination. These tools are cloud-native and offer a large community and easy integrations. At PayIt we're using exporting Java application metrics using a Dropwizard metrics exporter, and our Node.js services now use the prom-client npm library to serve metrics.

See more
Conor Myhrvold
Tech Brand Mgr, Office of CTO at Uber · | 15 upvotes · 4.9M views

Why we spent several years building an open source, large-scale metrics alerting system, M3, built for Prometheus:

By late 2014, all services, infrastructure, and servers at Uber emitted metrics to a Graphite stack that stored them using the Whisper file format in a sharded Carbon cluster. We used Grafana for dashboarding and Nagios for alerting, issuing Graphite threshold checks via source-controlled scripts. While this worked for a while, expanding the Carbon cluster required a manual resharding process and, due to lack of replication, any single node’s disk failure caused permanent loss of its associated metrics. In short, this solution was not able to meet our needs as the company continued to grow.

To ensure the scalability of Uber’s metrics backend, we decided to build out a system that provided fault tolerant metrics ingestion, storage, and querying as a managed platform...

https://eng.uber.com/m3/

(GitHub : https://github.com/m3db/m3)

See more
New Relic logo

New Relic

20.8K
8.6K
1.9K
New Relic is the industry’s largest and most comprehensive cloud-based observability platform.
20.8K
8.6K
+ 1
1.9K
PROS OF NEW RELIC
  • 415
    Easy setup
  • 344
    Really powerful
  • 245
    Awesome visualization
  • 194
    Ease of use
  • 151
    Great ui
  • 106
    Free tier
  • 80
    Great tool for insights
  • 66
    Heroku Integration
  • 55
    Market leader
  • 49
    Peace of mind
  • 21
    Push notifications
  • 20
    Email notifications
  • 17
    Heroku Add-on
  • 16
    Error Detection and Alerting
  • 13
    Multiple language support
  • 11
    SQL Analysis
  • 11
    Server Resources Monitoring
  • 9
    Transaction Tracing
  • 8
    Apdex Scores
  • 8
    Azure Add-on
  • 7
    Analysis of CPU, Disk, Memory, and Network
  • 7
    Detailed reports
  • 6
    Performance of External Services
  • 6
    Error Analysis
  • 6
    Application Availability Monitoring and Alerting
  • 6
    Application Response Times
  • 5
    Most Time Consuming Transactions
  • 5
    JVM Performance Analyzer (Java)
  • 4
    Browser Transaction Tracing
  • 4
    Top Database Operations
  • 4
    Easy to use
  • 3
    Application Map
  • 3
    Weekly Performance Email
  • 3
    Pagoda Box integration
  • 3
    Custom Dashboards
  • 2
    Easy to setup
  • 2
    Background Jobs Transaction Analysis
  • 2
    App Speed Index
  • 1
    Super Expensive
  • 1
    Team Collaboration Tools
  • 1
    Metric Data Retention
  • 1
    Metric Data Resolution
  • 1
    Worst Transactions by User Dissatisfaction
  • 1
    Real User Monitoring Overview
  • 1
    Real User Monitoring Analysis and Breakdown
  • 1
    Time Comparisons
  • 1
    Access to Performance Data API
  • 1
    Incident Detection and Alerting
  • 1
    Best of the best, what more can you ask for
  • 1
    Best monitoring on the market
  • 1
    Rails integration
  • 1
    Free
  • 0
    Proce
  • 0
    Price
  • 0
    Exceptions
  • 0
    Cost
CONS OF NEW RELIC
  • 20
    Pricing model doesn't suit microservices
  • 10
    UI isn't great
  • 7
    Expensive
  • 7
    Visualizations aren't very helpful
  • 5
    Hard to understand why things in your app are breaking

related New Relic posts

Cooper Marcus
Director of Ecosystem at Kong Inc. · | 17 upvotes · 116.6K views
Shared insights
on
New RelicNew RelicGitHubGitHubZapierZapier
at

I've used more and more of New Relic Insights here in my work at Kong. New Relic Insights is a "time series event database as a service" with a super-easy API for inserting custom events, and a flexible query language for building visualization widgets and dashboards.

I'm a big fan of New Relic Insights when I have data I know I need to analyze, but perhaps I'm not exactly sure how I want to analyze it in the future. For example, at Kong we recently wanted to get some understanding of our open source community's activity on our GitHub repos. I was able to quickly configure GitHub to send webhooks to Zapier , which in turn posted the JSON to New Relic Insights.

Insights is schema-less and configuration-less - just start posting JSON key value pairs, then start querying your data.

Within minutes, data was flowing from GitHub to Insights, and I was building widgets on my Insights dashboard to help my colleagues visualize the activity of our open source community.

#GitHubAnalytics #OpenSourceCommunityAnalytics #CommunityAnalytics #RepoAnalytics

See more
Julien DeFrance
Principal Software Engineer at Tophatter · | 16 upvotes · 3.2M views

Back in 2014, I was given an opportunity to re-architect SmartZip Analytics platform, and flagship product: SmartTargeting. This is a SaaS software helping real estate professionals keeping up with their prospects and leads in a given neighborhood/territory, finding out (thanks to predictive analytics) who's the most likely to list/sell their home, and running cross-channel marketing automation against them: direct mail, online ads, email... The company also does provide Data APIs to Enterprise customers.

I had inherited years and years of technical debt and I knew things had to change radically. The first enabler to this was to make use of the cloud and go with AWS, so we would stop re-inventing the wheel, and build around managed/scalable services.

For the SaaS product, we kept on working with Rails as this was what my team had the most knowledge in. We've however broken up the monolith and decoupled the front-end application from the backend thanks to the use of Rails API so we'd get independently scalable micro-services from now on.

Our various applications could now be deployed using AWS Elastic Beanstalk so we wouldn't waste any more efforts writing time-consuming Capistrano deployment scripts for instance. Combined with Docker so our application would run within its own container, independently from the underlying host configuration.

Storage-wise, we went with Amazon S3 and ditched any pre-existing local or network storage people used to deal with in our legacy systems. On the database side: Amazon RDS / MySQL initially. Ultimately migrated to Amazon RDS for Aurora / MySQL when it got released. Once again, here you need a managed service your cloud provider handles for you.

Future improvements / technology decisions included:

Caching: Amazon ElastiCache / Memcached CDN: Amazon CloudFront Systems Integration: Segment / Zapier Data-warehousing: Amazon Redshift BI: Amazon Quicksight / Superset Search: Elasticsearch / Amazon Elasticsearch Service / Algolia Monitoring: New Relic

As our usage grows, patterns changed, and/or our business needs evolved, my role as Engineering Manager then Director of Engineering was also to ensure my team kept on learning and innovating, while delivering on business value.

One of these innovations was to get ourselves into Serverless : Adopting AWS Lambda was a big step forward. At the time, only available for Node.js (Not Ruby ) but a great way to handle cost efficiency, unpredictable traffic, sudden bursts of traffic... Ultimately you want the whole chain of services involved in a call to be serverless, and that's when we've started leveraging Amazon DynamoDB on these projects so they'd be fully scalable.

See more
InfluxDB logo

InfluxDB

1K
1.2K
175
An open-source distributed time series database with no external dependencies
1K
1.2K
+ 1
175
PROS OF INFLUXDB
  • 59
    Time-series data analysis
  • 30
    Easy setup, no dependencies
  • 24
    Fast, scalable & open source
  • 21
    Open source
  • 20
    Real-time analytics
  • 6
    Continuous Query support
  • 5
    Easy Query Language
  • 4
    HTTP API
  • 4
    Out-of-the-box, automatic Retention Policy
  • 1
    Offers Enterprise version
  • 1
    Free Open Source version
CONS OF INFLUXDB
  • 4
    Instability
  • 1
    Proprietary query language
  • 1
    HA or Clustering is only in paid version

related InfluxDB posts

Hi everyone. I'm trying to create my personal syslog monitoring.

  1. To get the logs, I have uncertainty to choose the way: 1.1 Use Logstash like a TCP server. 1.2 Implement a Go TCP server.

  2. To store and plot data. 2.1 Use Elasticsearch tools. 2.2 Use InfluxDB and Grafana.

I would like to know... Which is a cheaper and scalable solution?

Or even if there is a better way to do it.

See more
Shared insights
on
InfluxDBInfluxDBJSONJSON

Hi all, I am trying to decide on a database for time-series data. The data could be tracking some simple series like statistics over time or could be a nested JSON (multi-level nested). I have been experimenting with InfluxDB for the former case of a simple list of variables over time. The continuous queries are powerful too. But for the latter case, where InfluxDB requires to flatten out a nested JSON before saving it into the database the complexity arises. The nested JSON could be objects or a list of objects and objects under objects in which a complete flattening doesn't leave the data in a state for the queries I'm thinking.

[ 
  { "timestamp": "2021-09-06T12:51:00Z",
    "name": "Name1",
    "books": [
        { "title": "Book1", "page": 100 },
        { "title": "Book2", "page": 280 },
    ]
  },
 { "timestamp": "2021-09-06T12:52:00Z",
   "name": "Name2",
   "books": [
       { "title": "Book1", "page": 320},
       { "title": "Book2", "page": 530 },
       { "title": "Book3", "page": 150 },
   ]
 }
]

Sample query: With a time range, for name xyz, find all the book title for which # of page < 400.

If I flatten it completely, it will result in fields like books_0_title, books_0_page, books_1_title, books_1_page, ... And by losing the nested context it will be hard to return one field (title) where some condition for another field (page) satisfies.

Appreciate any suggestions. Even a piece of generic advice on handling the time-series and choosing the database is welcome!

See more
Splunk logo

Splunk

614
1K
20
Search, monitor, analyze and visualize machine data
614
1K
+ 1
20
PROS OF SPLUNK
  • 3
    API for searching logs, running reports
  • 3
    Alert system based on custom query results
  • 2
    Splunk language supports string, date manip, math, etc
  • 2
    Dashboarding on any log contents
  • 2
    Custom log parsing as well as automatic parsing
  • 2
    Query engine supports joining, aggregation, stats, etc
  • 2
    Rich GUI for searching live logs
  • 2
    Ability to style search results into reports
  • 1
    Granular scheduling and time window support
  • 1
    Query any log as key-value pairs
CONS OF SPLUNK
  • 1
    Splunk query language rich so lots to learn

related Splunk posts

Shared insights
on
SplunkSplunkDjangoDjango

I am designing a Django application for my organization which will be used as an internal tool. The infra team said that I will not be having SSH access to the production server and I will have to log all my backend application messages to Splunk. I have no knowledge of Splunk so the following are the approaches I am considering: Approach 1: Create an hourly cron job that uploads the server log file to some Splunk storage for later analysis. - Is this possible? Approach 2: Is it possible just to stream the logs to some splunk endpoint? (If yes, I feel network usage and communication overhead will be a pain-point for my application)

Is there any better or standard approach? Thanks in advance.

See more
Shared insights
on
KibanaKibanaSplunkSplunkGrafanaGrafana

I use Kibana because it ships with the ELK stack. I don't find it as powerful as Splunk however it is light years above grepping through log files. We previously used Grafana but found it to be annoying to maintain a separate tool outside of the ELK stack. We were able to get everything we needed from Kibana.

See more
Graphite logo

Graphite

390
420
42
A highly scalable real-time graphing system
390
420
+ 1
42
PROS OF GRAPHITE
  • 16
    Render any graph
  • 9
    Great functions to apply on timeseries
  • 8
    Well supported integrations
  • 6
    Includes event tracking
  • 3
    Rolling aggregation makes storage managable
CONS OF GRAPHITE
    Be the first to leave a con

    related Graphite posts

    Conor Myhrvold
    Tech Brand Mgr, Office of CTO at Uber · | 15 upvotes · 4.9M views

    Why we spent several years building an open source, large-scale metrics alerting system, M3, built for Prometheus:

    By late 2014, all services, infrastructure, and servers at Uber emitted metrics to a Graphite stack that stored them using the Whisper file format in a sharded Carbon cluster. We used Grafana for dashboarding and Nagios for alerting, issuing Graphite threshold checks via source-controlled scripts. While this worked for a while, expanding the Carbon cluster required a manual resharding process and, due to lack of replication, any single node’s disk failure caused permanent loss of its associated metrics. In short, this solution was not able to meet our needs as the company continued to grow.

    To ensure the scalability of Uber’s metrics backend, we decided to build out a system that provided fault tolerant metrics ingestion, storage, and querying as a managed platform...

    https://eng.uber.com/m3/

    (GitHub : https://github.com/m3db/m3)

    See more

    A huge part of our continuous deployment practices is to have granular alerting and monitoring across the platform. To do this, we run Sentry on-premise, inside our VPCs, for our event alerting, and we run an awesome observability and monitoring system consisting of StatsD, Graphite and Grafana. We have dashboards using this system to monitor our core subsystems so that we can know the health of any given subsystem at any moment. This system ties into our PagerDuty rotation, as well as alerts from some of our Amazon CloudWatch alarms (we’re looking to migrate all of these to our internal monitoring system soon).

    See more
    Zabbix logo

    Zabbix

    673
    977
    66
    Track, record, alert and visualize performance and availability of IT resources
    673
    977
    + 1
    66
    PROS OF ZABBIX
    • 21
      Free
    • 9
      Alerts
    • 5
      Service/node/network discovery
    • 5
      Templates
    • 4
      Base metrics from the box
    • 3
      Multi-dashboards
    • 3
      SMS/Email/Messenger alerts
    • 2
      Grafana plugin available
    • 2
      Supports Graphs ans screens
    • 2
      Support proxies (for monitoring remote branches)
    • 1
      Perform website checking (response time, loading, ...)
    • 1
      API available for creating own apps
    • 1
      Templates free available (Zabbix Share)
    • 1
      Works with multiple databases
    • 1
      Advanced integrations
    • 1
      Supports multiple protocols/agents
    • 1
      Complete Logs Report
    • 1
      Open source
    • 1
      Supports large variety of Operating Systems
    • 1
      Supports JMX (Java, Tomcat, Jboss, ...)
    CONS OF ZABBIX
    • 5
      The UI is in PHP
    • 2
      Puppet module is sluggish

    related Zabbix posts

    Shared insights
    on
    DatadogDatadogZabbixZabbixCentreonCentreon

    My team is divided on using Centreon or Zabbix for enterprise monitoring and alert automation. Can someone let us know which one is better? There is one more tool called Datadog that we are using for cloud assets. Of course, Datadog presents us with huge bills. So we want to have a comparative study. Suggestions and advice are welcome. Thanks!

    See more
    Shared insights
    on
    ZabbixZabbixCheckmkCheckmk

    I am looking for an easy to set up and use monitoring solution for my servers and network infrastructure. What are the main differences between Checkmk and Zabbix? What would you recommend and why?

    See more
    AppDynamics logo

    AppDynamics

    310
    627
    68
    Application management for the cloud generation
    310
    627
    + 1
    68
    PROS OF APPDYNAMICS
    • 21
      Deep code visibility
    • 13
      Powerful
    • 8
      Real-Time Visibility
    • 7
      Great visualization
    • 6
      Easy Setup
    • 6
      Comprehensive Coverage of Programming Languages
    • 4
      Deep DB Troubleshooting
    • 3
      Excellent Customer Support
    CONS OF APPDYNAMICS
    • 5
      Expensive
    • 2
      Poor to non-existent integration with aws services

    related AppDynamics posts

    Farzeem Diamond Jiwani
    Software Engineer at IVP · | 8 upvotes · 1.4M views

    Hey there! We are looking at Datadog, Dynatrace, AppDynamics, and New Relic as options for our web application monitoring.

    Current Environment: .NET Core Web app hosted on Microsoft IIS

    Future Environment: Web app will be hosted on Microsoft Azure

    Tech Stacks: IIS, RabbitMQ, Redis, Microsoft SQL Server

    Requirement: Infra Monitoring, APM, Real - User Monitoring (User activity monitoring i.e., time spent on a page, most active page, etc.), Service Tracing, Root Cause Analysis, and Centralized Log Management.

    Please advise on the above. Thanks!

    See more

    We are evaluating an APM tool and would like to select between AppDynamics or Datadog. Our applications are largely hosted on Microsoft Azure but we would keep the option to move to AWS or Google Cloud Platform in the future.

    In addition to core Azure services, we will be hosting other components - including MongoDB, Keycloak, PagerDuty, etc. Our applications are largely C# and React-based using frontend for Backend patterns and Azure API gateway. In addition, there are close to 50+ external services integrated using both REST and SOAP.

    See more