What is Prometheus and what are its top alternatives?
Prometheus is an open-source monitoring and alerting toolkit designed for reliability and scalability of systems. It enables users to collect metrics from diverse sources, store them efficiently, and allow for querying and creating alerts based on those metrics. However, one limitation of Prometheus is its lack of long-term storage capabilities, which can be challenging for historical data analysis.
- Grafana: Grafana is a leading open-source visualization tool that can be integrated with various data sources including Prometheus. Key features include customizable dashboards, alerting, and extensive plugin support. Pros include a user-friendly interface and a wide community support, while cons involve a steeper learning curve compared to other tools.
- InfluxDB: InfluxDB is a time-series database that can be used as a data source for monitoring systems. It offers efficient data ingestion, query language, and horizontal scalability. Pros include easy integration with Grafana and Telegraf, while cons involve limitations in clustering capabilities.
- Prometheus Operator: Prometheus Operator is a Kubernetes native tool that simplifies the deployment and management of Prometheus instances on Kubernetes clusters. Key features include automatic configuration and scaling, but it may require expertise in Kubernetes for setup and maintenance.
- Zabbix: Zabbix is a mature monitoring solution that offers features such as auto-discovery, real-time monitoring, and rich visualization options. Pros include high scalability and a wide range of out-of-the-box monitoring capabilities, while cons involve a complex setup process.
- Thanos: Thanos is a platform designed to expand Prometheus capabilities for long-term storage and high availability. It offers features like global querying, compaction, and data deduplication. Pros include seamless integration with existing Prometheus setups, but cons involve potential complexity in configuring the setup.
- Netdata: Netdata is a real-time monitoring, troubleshooting, and alerting tool that provides insights into system performance. Key features include a user-friendly interface, extensive metrics collection, and easy installation. Pros include a vast array of integrations and an active community, while cons involve potential resource usage on monitored systems.
- Elasticsearch with Beats: Elasticsearch, combined with Beats for data shipping, can be used for log monitoring and analysis similar to Prometheus for metrics. It offers scalability, advanced search capabilities, and a wide range of integrations. Pros include rich data visualization options with Kibana, while cons involve potential complexity in configuration.
- Sysdig: Sysdig offers a monitoring and security platform for containers and cloud-native applications. It features real-time visibility, troubleshooting capabilities, and security monitoring. Pros include comprehensive container monitoring features, while cons involve a higher cost compared to other tools.
- New Relic: New Relic is a cloud-based observability platform that provides end-to-end visibility into application performance and infrastructure. Key features include application monitoring, infrastructure monitoring, and real-user monitoring. Pros include easy setup and a wide array of integrations, while cons involve potential cost implications for larger setups.
- OpenTelemetry: OpenTelemetry is an open-source observability framework that allows for collecting telemetry data from applications, microservices, and infrastructure. It offers flexibility in integrations, support for various languages, and community-driven development. Pros include vendor-neutral standards and easy instrumentation, while cons involve potential complexity in setting up the entire stack.
Top Alternatives to Prometheus
- Datadog
Datadog is the leading service for cloud-scale monitoring. It is used by IT, operations, and development teams who build and operate applications that run on dynamic or hybrid cloud infrastructure. Start monitoring in minutes with Datadog! ...
- Grafana
Grafana is a general purpose dashboard and graph composer. It's focused on providing rich ways to visualize time series metrics, mainly though graphs but supports other ways to visualize data through a pluggable panel architecture. It currently has rich support for for Graphite, InfluxDB and OpenTSDB. But supports other data sources via plugins. ...
- New Relic
The world’s best software and DevOps teams rely on New Relic to move faster, make better decisions and create best-in-class digital experiences. If you run software, you need to run New Relic. More than 50% of the Fortune 100 do too. ...
- InfluxDB
InfluxDB is a scalable datastore for metrics, events, and real-time analytics. It has a built-in HTTP API so you don't have to write any server side code to get up and running. InfluxDB is designed to be scalable, simple to install and manage, and fast to get data in and out. ...
- Splunk
It provides the leading platform for Operational Intelligence. Customers use it to search, monitor, analyze and visualize machine data. ...
- Graphite
Graphite does two things: 1) Store numeric time-series data and 2) Render graphs of this data on demand ...
- Zabbix
Zabbix is a mature and effortless enterprise-class open source monitoring solution for network monitoring and application monitoring of millions of metrics. ...
- AppDynamics
AppDynamics develops application performance management (APM) solutions that deliver problem resolution for highly distributed applications through transaction flow monitoring and deep diagnostics. ...
Prometheus alternatives & related posts
Datadog
- Monitoring for many apps (databases, web servers, etc)139
- Easy setup107
- Powerful ui87
- Powerful integrations84
- Great value70
- Great visualization54
- Events + metrics = clarity46
- Notifications41
- Custom metrics41
- Flexibility39
- Free & paid plans19
- Great customer support16
- Makes my life easier15
- Adapts automatically as i scale up10
- Easy setup and plugins9
- Super easy and powerful8
- In-context collaboration7
- AWS support7
- Rich in features6
- Docker support5
- Cute logo4
- Source control and bug tracking4
- Monitor almost everything4
- Cost4
- Full visibility of applications4
- Simple, powerful, great for infra4
- Easy to Analyze4
- Best than others4
- Automation tools4
- Best in the field3
- Free setup3
- Good for Startups3
- Expensive3
- APM2
- Expensive19
- No errors exception tracking4
- External Network Goes Down You Wont Be Logging2
- Complicated1
related Datadog posts
We just launched the Segment Config API (try it out for yourself here) — a set of public REST APIs that enable you to manage your Segment configuration. Behind the scenes the Config API is built with Go , GRPC and Envoy.
At Segment, we build new services in Go by default. The language is simple so new team members quickly ramp up on a codebase. The tool chain is fast so developers get immediate feedback when they break code, tests or integrations with other systems. The runtime is fast so it performs great at scale.
For the newest round of APIs we adopted the GRPC service #framework.
The Protocol Buffer service definition language makes it easy to design type-safe and consistent APIs, thanks to ecosystem tools like the Google API Design Guide for API standards, uber/prototool
for formatting and linting .protos and lyft/protoc-gen-validate
for defining field validations, and grpc-gateway
for defining REST mapping.
With a well designed .proto, its easy to generate a Go server interface and a TypeScript client, providing type-safe RPC between languages.
For the API gateway and RPC we adopted the Envoy service proxy.
The internet-facing segmentapis.com
endpoint is an Envoy front proxy that rate-limits and authenticates every request. It then transcodes a #REST / #JSON request to an upstream GRPC request. The upstream GRPC servers are running an Envoy sidecar configured for Datadog stats.
The result is API #security , #reliability and consistent #observability through Envoy configuration, not code.
We experimented with Swagger service definitions, but the spec is sprawling and the generated clients and server stubs leave a lot to be desired. GRPC and .proto and the Go implementation feels better designed and implemented. Thanks to the GRPC tooling and ecosystem you can generate Swagger from .protos, but it’s effectively impossible to go the other way.
Our primary source of monitoring and alerting is Datadog. We’ve got prebuilt dashboards for every scenario and integration with PagerDuty to manage routing any alerts. We’ve definitely scaled past the point where managing dashboards is easy, but we haven’t had time to invest in using features like Anomaly Detection. We’ve started using Honeycomb for some targeted debugging of complex production issues and we are liking what we’ve seen. We capture any unhandled exceptions with Rollbar and, if we realize one will keep happening, we quickly convert the metrics to point back to Datadog, to keep Rollbar as clean as possible.
We use Segment to consolidate all of our trackers, the most important of which goes to Amplitude to analyze user patterns. However, if we need a more consolidated view, we push all of our data to our own data warehouse running PostgreSQL; this is available for analytics and dashboard creation through Looker.
- Beautiful89
- Graphs are interactive68
- Free57
- Easy56
- Nicer than the Graphite web interface34
- Many integrations26
- Can build dashboards18
- Easy to specify time window10
- Can collaborate on dashboards10
- Dashboards contain number tiles9
- Open Source5
- Integration with InfluxDB5
- Click and drag to zoom in5
- Authentification and users management4
- Threshold limits in graphs4
- Alerts3
- It is open to cloud watch and many database3
- Simple and native support to Prometheus3
- Great community support2
- You can use this for development to check memcache2
- You can visualize real time data to put alerts2
- Grapsh as code0
- Plugin visualizationa0
- No interactive query builder1
related Grafana posts
Grafana and Prometheus together, running on Kubernetes , is a powerful combination. These tools are cloud-native and offer a large community and easy integrations. At PayIt we're using exporting Java application metrics using a Dropwizard metrics exporter, and our Node.js services now use the prom-client npm library to serve metrics.
Why we spent several years building an open source, large-scale metrics alerting system, M3, built for Prometheus:
By late 2014, all services, infrastructure, and servers at Uber emitted metrics to a Graphite stack that stored them using the Whisper file format in a sharded Carbon cluster. We used Grafana for dashboarding and Nagios for alerting, issuing Graphite threshold checks via source-controlled scripts. While this worked for a while, expanding the Carbon cluster required a manual resharding process and, due to lack of replication, any single node’s disk failure caused permanent loss of its associated metrics. In short, this solution was not able to meet our needs as the company continued to grow.
To ensure the scalability of Uber’s metrics backend, we decided to build out a system that provided fault tolerant metrics ingestion, storage, and querying as a managed platform...
(GitHub : https://github.com/m3db/m3)
New Relic
- Easy setup415
- Really powerful344
- Awesome visualization245
- Ease of use194
- Great ui151
- Free tier106
- Great tool for insights80
- Heroku Integration66
- Market leader55
- Peace of mind49
- Push notifications21
- Email notifications20
- Heroku Add-on17
- Error Detection and Alerting16
- Multiple language support13
- SQL Analysis11
- Server Resources Monitoring11
- Transaction Tracing9
- Apdex Scores8
- Azure Add-on8
- Analysis of CPU, Disk, Memory, and Network7
- Detailed reports7
- Performance of External Services6
- Error Analysis6
- Application Availability Monitoring and Alerting6
- Application Response Times6
- Most Time Consuming Transactions5
- JVM Performance Analyzer (Java)5
- Browser Transaction Tracing4
- Top Database Operations4
- Easy to use4
- Application Map3
- Weekly Performance Email3
- Pagoda Box integration3
- Custom Dashboards3
- Easy to setup2
- Background Jobs Transaction Analysis2
- App Speed Index2
- Super Expensive1
- Team Collaboration Tools1
- Metric Data Retention1
- Metric Data Resolution1
- Worst Transactions by User Dissatisfaction1
- Real User Monitoring Overview1
- Real User Monitoring Analysis and Breakdown1
- Time Comparisons1
- Access to Performance Data API1
- Incident Detection and Alerting1
- Best of the best, what more can you ask for1
- Best monitoring on the market1
- Rails integration1
- Free1
- Proce0
- Price0
- Exceptions0
- Cost0
- Pricing model doesn't suit microservices20
- UI isn't great10
- Expensive7
- Visualizations aren't very helpful7
- Hard to understand why things in your app are breaking5
related New Relic posts
I've used more and more of New Relic Insights here in my work at Kong. New Relic Insights is a "time series event database as a service" with a super-easy API for inserting custom events, and a flexible query language for building visualization widgets and dashboards.
I'm a big fan of New Relic Insights when I have data I know I need to analyze, but perhaps I'm not exactly sure how I want to analyze it in the future. For example, at Kong we recently wanted to get some understanding of our open source community's activity on our GitHub repos. I was able to quickly configure GitHub to send webhooks to Zapier , which in turn posted the JSON to New Relic Insights.
Insights is schema-less and configuration-less - just start posting JSON key value pairs, then start querying your data.
Within minutes, data was flowing from GitHub to Insights, and I was building widgets on my Insights dashboard to help my colleagues visualize the activity of our open source community.
#GitHubAnalytics #OpenSourceCommunityAnalytics #CommunityAnalytics #RepoAnalytics
Back in 2014, I was given an opportunity to re-architect SmartZip Analytics platform, and flagship product: SmartTargeting. This is a SaaS software helping real estate professionals keeping up with their prospects and leads in a given neighborhood/territory, finding out (thanks to predictive analytics) who's the most likely to list/sell their home, and running cross-channel marketing automation against them: direct mail, online ads, email... The company also does provide Data APIs to Enterprise customers.
I had inherited years and years of technical debt and I knew things had to change radically. The first enabler to this was to make use of the cloud and go with AWS, so we would stop re-inventing the wheel, and build around managed/scalable services.
For the SaaS product, we kept on working with Rails as this was what my team had the most knowledge in. We've however broken up the monolith and decoupled the front-end application from the backend thanks to the use of Rails API so we'd get independently scalable micro-services from now on.
Our various applications could now be deployed using AWS Elastic Beanstalk so we wouldn't waste any more efforts writing time-consuming Capistrano deployment scripts for instance. Combined with Docker so our application would run within its own container, independently from the underlying host configuration.
Storage-wise, we went with Amazon S3 and ditched any pre-existing local or network storage people used to deal with in our legacy systems. On the database side: Amazon RDS / MySQL initially. Ultimately migrated to Amazon RDS for Aurora / MySQL when it got released. Once again, here you need a managed service your cloud provider handles for you.
Future improvements / technology decisions included:
Caching: Amazon ElastiCache / Memcached CDN: Amazon CloudFront Systems Integration: Segment / Zapier Data-warehousing: Amazon Redshift BI: Amazon Quicksight / Superset Search: Elasticsearch / Amazon Elasticsearch Service / Algolia Monitoring: New Relic
As our usage grows, patterns changed, and/or our business needs evolved, my role as Engineering Manager then Director of Engineering was also to ensure my team kept on learning and innovating, while delivering on business value.
One of these innovations was to get ourselves into Serverless : Adopting AWS Lambda was a big step forward. At the time, only available for Node.js (Not Ruby ) but a great way to handle cost efficiency, unpredictable traffic, sudden bursts of traffic... Ultimately you want the whole chain of services involved in a call to be serverless, and that's when we've started leveraging Amazon DynamoDB on these projects so they'd be fully scalable.
InfluxDB
- Time-series data analysis59
- Easy setup, no dependencies30
- Fast, scalable & open source24
- Open source21
- Real-time analytics20
- Continuous Query support6
- Easy Query Language5
- HTTP API4
- Out-of-the-box, automatic Retention Policy4
- Offers Enterprise version1
- Free Open Source version1
- Instability4
- Proprietary query language1
- HA or Clustering is only in paid version1
related InfluxDB posts
Hi everyone. I'm trying to create my personal syslog monitoring.
To get the logs, I have uncertainty to choose the way: 1.1 Use Logstash like a TCP server. 1.2 Implement a Go TCP server.
To store and plot data. 2.1 Use Elasticsearch tools. 2.2 Use InfluxDB and Grafana.
I would like to know... Which is a cheaper and scalable solution?
Or even if there is a better way to do it.
Hi all, I am trying to decide on a database for time-series data. The data could be tracking some simple series like statistics over time or could be a nested JSON (multi-level nested). I have been experimenting with InfluxDB for the former case of a simple list of variables over time. The continuous queries are powerful too. But for the latter case, where InfluxDB requires to flatten out a nested JSON before saving it into the database the complexity arises. The nested JSON could be objects or a list of objects and objects under objects in which a complete flattening doesn't leave the data in a state for the queries I'm thinking.
[
{ "timestamp": "2021-09-06T12:51:00Z",
"name": "Name1",
"books": [
{ "title": "Book1", "page": 100 },
{ "title": "Book2", "page": 280 },
]
},
{ "timestamp": "2021-09-06T12:52:00Z",
"name": "Name2",
"books": [
{ "title": "Book1", "page": 320},
{ "title": "Book2", "page": 530 },
{ "title": "Book3", "page": 150 },
]
}
]
Sample query: With a time range, for name xyz, find all the book title for which # of page < 400.
If I flatten it completely, it will result in fields
like books_0_title
, books_0_page
, books_1_title
, books_1_page
, ... And by losing the nested context it will be hard to return one field (title) where some condition for another field (page) satisfies.
Appreciate any suggestions. Even a piece of generic advice on handling the time-series and choosing the database is welcome!
- API for searching logs, running reports3
- Alert system based on custom query results3
- Splunk language supports string, date manip, math, etc2
- Dashboarding on any log contents2
- Custom log parsing as well as automatic parsing2
- Query engine supports joining, aggregation, stats, etc2
- Rich GUI for searching live logs2
- Ability to style search results into reports2
- Granular scheduling and time window support1
- Query any log as key-value pairs1
- Splunk query language rich so lots to learn1
related Splunk posts
I am designing a Django application for my organization which will be used as an internal tool. The infra team said that I will not be having SSH access to the production server and I will have to log all my backend application messages to Splunk. I have no knowledge of Splunk so the following are the approaches I am considering: Approach 1: Create an hourly cron job that uploads the server log file to some Splunk storage for later analysis. - Is this possible? Approach 2: Is it possible just to stream the logs to some splunk endpoint? (If yes, I feel network usage and communication overhead will be a pain-point for my application)
Is there any better or standard approach? Thanks in advance.
I use Kibana because it ships with the ELK stack. I don't find it as powerful as Splunk however it is light years above grepping through log files. We previously used Grafana but found it to be annoying to maintain a separate tool outside of the ELK stack. We were able to get everything we needed from Kibana.
- Render any graph16
- Great functions to apply on timeseries9
- Well supported integrations8
- Includes event tracking6
- Rolling aggregation makes storage managable3
related Graphite posts
Why we spent several years building an open source, large-scale metrics alerting system, M3, built for Prometheus:
By late 2014, all services, infrastructure, and servers at Uber emitted metrics to a Graphite stack that stored them using the Whisper file format in a sharded Carbon cluster. We used Grafana for dashboarding and Nagios for alerting, issuing Graphite threshold checks via source-controlled scripts. While this worked for a while, expanding the Carbon cluster required a manual resharding process and, due to lack of replication, any single node’s disk failure caused permanent loss of its associated metrics. In short, this solution was not able to meet our needs as the company continued to grow.
To ensure the scalability of Uber’s metrics backend, we decided to build out a system that provided fault tolerant metrics ingestion, storage, and querying as a managed platform...
(GitHub : https://github.com/m3db/m3)
A huge part of our continuous deployment practices is to have granular alerting and monitoring across the platform. To do this, we run Sentry on-premise, inside our VPCs, for our event alerting, and we run an awesome observability and monitoring system consisting of StatsD, Graphite and Grafana. We have dashboards using this system to monitor our core subsystems so that we can know the health of any given subsystem at any moment. This system ties into our PagerDuty rotation, as well as alerts from some of our Amazon CloudWatch alarms (we’re looking to migrate all of these to our internal monitoring system soon).
Zabbix
- Free21
- Alerts9
- Service/node/network discovery5
- Templates5
- Base metrics from the box4
- Multi-dashboards3
- SMS/Email/Messenger alerts3
- Grafana plugin available2
- Supports Graphs ans screens2
- Support proxies (for monitoring remote branches)2
- Perform website checking (response time, loading, ...)1
- API available for creating own apps1
- Templates free available (Zabbix Share)1
- Works with multiple databases1
- Advanced integrations1
- Supports multiple protocols/agents1
- Complete Logs Report1
- Open source1
- Supports large variety of Operating Systems1
- Supports JMX (Java, Tomcat, Jboss, ...)1
- The UI is in PHP5
- Puppet module is sluggish2
related Zabbix posts
My team is divided on using Centreon or Zabbix for enterprise monitoring and alert automation. Can someone let us know which one is better? There is one more tool called Datadog that we are using for cloud assets. Of course, Datadog presents us with huge bills. So we want to have a comparative study. Suggestions and advice are welcome. Thanks!
I am looking for an easy to set up and use monitoring solution for my servers and network infrastructure. What are the main differences between Checkmk and Zabbix? What would you recommend and why?
- Deep code visibility21
- Powerful13
- Real-Time Visibility8
- Great visualization7
- Easy Setup6
- Comprehensive Coverage of Programming Languages6
- Deep DB Troubleshooting4
- Excellent Customer Support3
- Expensive5
- Poor to non-existent integration with aws services2
related AppDynamics posts
Hey there! We are looking at Datadog, Dynatrace, AppDynamics, and New Relic as options for our web application monitoring.
Current Environment: .NET Core Web app hosted on Microsoft IIS
Future Environment: Web app will be hosted on Microsoft Azure
Tech Stacks: IIS, RabbitMQ, Redis, Microsoft SQL Server
Requirement: Infra Monitoring, APM, Real - User Monitoring (User activity monitoring i.e., time spent on a page, most active page, etc.), Service Tracing, Root Cause Analysis, and Centralized Log Management.
Please advise on the above. Thanks!
We are evaluating an APM tool and would like to select between AppDynamics or Datadog. Our applications are largely hosted on Microsoft Azure but we would keep the option to move to AWS or Google Cloud Platform in the future.
In addition to core Azure services, we will be hosting other components - including MongoDB, Keycloak, PagerDuty, etc. Our applications are largely C# and React-based using frontend for Backend patterns and Azure API gateway. In addition, there are close to 50+ external services integrated using both REST and SOAP.