Alternatives to ActiveMQ logo

Alternatives to ActiveMQ

RabbitMQ, Kafka, Apollo, IBM MQ, and ZeroMQ are the most popular alternatives and competitors to ActiveMQ.
454
1.1K
+ 1
76

What is ActiveMQ and what are its top alternatives?

Apache ActiveMQ is fast, supports many Cross Language Clients and Protocols, comes with easy to use Enterprise Integration Patterns and many advanced features while fully supporting JMS 1.1 and J2EE 1.4. Apache ActiveMQ is released under the Apache 2.0 License.
ActiveMQ is a tool in the Message Queue category of a tech stack.
ActiveMQ is an open source tool with 2K GitHub stars and 1.3K GitHub forks. Here’s a link to ActiveMQ's open source repository on GitHub

Top Alternatives to ActiveMQ

  • RabbitMQ

    RabbitMQ

    RabbitMQ gives your applications a common platform to send and receive messages, and your messages a safe place to live until received. ...

  • Kafka

    Kafka

    Kafka is a distributed, partitioned, replicated commit log service. It provides the functionality of a messaging system, but with a unique design. ...

  • Apollo

    Apollo

    Build a universal GraphQL API on top of your existing REST APIs, so you can ship new application features fast without waiting on backend changes. ...

  • IBM MQ

    IBM MQ

    It is a messaging middleware that simplifies and accelerates the integration of diverse applications and business data across multiple platforms. It offers proven, enterprise-grade messaging capabilities that skillfully and safely move information. ...

  • ZeroMQ

    ZeroMQ

    The 0MQ lightweight messaging kernel is a library which extends the standard socket interfaces with features traditionally provided by specialised messaging middleware products. 0MQ sockets provide an abstraction of asynchronous message queues, multiple messaging patterns, message filtering (subscriptions), seamless access to multiple transport protocols and more. ...

  • Amazon SQS

    Amazon SQS

    Transmit any volume of data, at any level of throughput, without losing messages or requiring other services to be always available. With SQS, you can offload the administrative burden of operating and scaling a highly available messaging cluster, while paying a low price for only what you use. ...

  • Celery

    Celery

    Celery is an asynchronous task queue/job queue based on distributed message passing. It is focused on real-time operation, but supports scheduling as well. ...

  • MQTT

    MQTT

    It was designed as an extremely lightweight publish/subscribe messaging transport. It is useful for connections with remote locations where a small code footprint is required and/or network bandwidth is at a premium. ...

ActiveMQ alternatives & related posts

RabbitMQ logo

RabbitMQ

14.8K
12.8K
518
Open source multiprotocol messaging broker
14.8K
12.8K
+ 1
518
PROS OF RABBITMQ
  • 229
    It's fast and it works with good metrics/monitoring
  • 79
    Ease of configuration
  • 58
    I like the admin interface
  • 50
    Easy to set-up and start with
  • 20
    Durable
  • 18
    Intuitive work through python
  • 18
    Standard protocols
  • 10
    Written primarily in Erlang
  • 8
    Simply superb
  • 6
    Completeness of messaging patterns
  • 3
    Scales to 1 million messages per second
  • 3
    Reliable
  • 2
    Better than most traditional queue based message broker
  • 2
    Distributed
  • 2
    Supports AMQP
  • 1
    Inubit Integration
  • 1
    Supports MQTT
  • 1
    Runs on Open Telecom Platform
  • 1
    High performance
  • 1
    Reliability
  • 1
    Clusterable
  • 1
    Clear documentation with different scripting language
  • 1
    Great ui
  • 1
    Better routing system
  • 1
    Delayed messages
CONS OF RABBITMQ
  • 9
    Too complicated cluster/HA config and management
  • 6
    Needs Erlang runtime. Need ops good with Erlang runtime
  • 5
    Configuration must be done first, not by your code
  • 4
    Slow

related RabbitMQ posts

James Cunningham
Operations Engineer at Sentry · | 18 upvotes · 1.3M views
Shared insights
on
CeleryCeleryRabbitMQRabbitMQ
at

As Sentry runs throughout the day, there are about 50 different offline tasks that we execute—anything from “process this event, pretty please” to “send all of these cool people some emails.” There are some that we execute once a day and some that execute thousands per second.

Managing this variety requires a reliably high-throughput message-passing technology. We use Celery's RabbitMQ implementation, and we stumbled upon a great feature called Federation that allows us to partition our task queue across any number of RabbitMQ servers and gives us the confidence that, if any single server gets backlogged, others will pitch in and distribute some of the backlogged tasks to their consumers.

#MessageQueue

See more
Yogesh Bhondekar
Co-Founder at weconnect.chat · | 15 upvotes · 96.8K views

Hi, I am building an enhanced web-conferencing app that will have a voice/video call, live chats, live notifications, live discussions, screen sharing, etc features. Ref: Zoom.

I need advise finalizing the tech stack for this app. I am considering below tech stack:

  • Frontend: React
  • Backend: Node.js
  • Database: MongoDB
  • IAAS: #AWS
  • Containers & Orchestration: Docker / Kubernetes
  • DevOps: GitLab, Terraform
  • Brokers: Redis / RabbitMQ

I need advice at the platform level as to what could be considered to support concurrent video streaming seamlessly.

Also, please suggest what could be a better tech stack for my app?

#SAAS #VideoConferencing #WebAndVideoConferencing #zoom #stack

See more
Kafka logo

Kafka

15.8K
14.8K
573
Distributed, fault tolerant, high throughput pub-sub messaging system
15.8K
14.8K
+ 1
573
PROS OF KAFKA
  • 122
    High-throughput
  • 116
    Distributed
  • 87
    Scalable
  • 81
    High-Performance
  • 65
    Durable
  • 36
    Publish-Subscribe
  • 19
    Simple-to-use
  • 15
    Open source
  • 10
    Written in Scala and java. Runs on JVM
  • 6
    Message broker + Streaming system
  • 4
    Avro schema integration
  • 2
    Suport Multiple clients
  • 2
    Robust
  • 2
    KSQL
  • 2
    Partioned, replayable log
  • 1
    Fun
  • 1
    Extremely good parallelism constructs
  • 1
    Simple publisher / multi-subscriber model
  • 1
    Flexible
CONS OF KAFKA
  • 27
    Non-Java clients are second-class citizens
  • 26
    Needs Zookeeper
  • 7
    Operational difficulties
  • 2
    Terrible Packaging

related Kafka posts

Eric Colson
Chief Algorithms Officer at Stitch Fix · | 21 upvotes · 2.1M views

The algorithms and data infrastructure at Stitch Fix is housed in #AWS. Data acquisition is split between events flowing through Kafka, and periodic snapshots of PostgreSQL DBs. We store data in an Amazon S3 based data warehouse. Apache Spark on Yarn is our tool of choice for data movement and #ETL. Because our storage layer (s3) is decoupled from our processing layer, we are able to scale our compute environment very elastically. We have several semi-permanent, autoscaling Yarn clusters running to serve our data processing needs. While the bulk of our compute infrastructure is dedicated to algorithmic processing, we also implemented Presto for adhoc queries and dashboards.

Beyond data movement and ETL, most #ML centric jobs (e.g. model training and execution) run in a similarly elastic environment as containers running Python and R code on Amazon EC2 Container Service clusters. The execution of batch jobs on top of ECS is managed by Flotilla, a service we built in house and open sourced (see https://github.com/stitchfix/flotilla-os).

At Stitch Fix, algorithmic integrations are pervasive across the business. We have dozens of data products actively integrated systems. That requires serving layer that is robust, agile, flexible, and allows for self-service. Models produced on Flotilla are packaged for deployment in production using Khan, another framework we've developed internally. Khan provides our data scientists the ability to quickly productionize those models they've developed with open source frameworks in Python 3 (e.g. PyTorch, sklearn), by automatically packaging them as Docker containers and deploying to Amazon ECS. This provides our data scientist a one-click method of getting from their algorithms to production. We then integrate those deployments into a service mesh, which allows us to A/B test various implementations in our product.

For more info:

#DataScience #DataStack #Data

See more
John Kodumal

As we've evolved or added additional infrastructure to our stack, we've biased towards managed services. Most new backing stores are Amazon RDS instances now. We do use self-managed PostgreSQL with TimescaleDB for time-series data—this is made HA with the use of Patroni and Consul.

We also use managed Amazon ElastiCache instances instead of spinning up Amazon EC2 instances to run Redis workloads, as well as shifting to Amazon Kinesis instead of Kafka.

See more
Apollo logo

Apollo

1.9K
1.5K
18
GraphQL server for Express, Connect, Hapi, Koa and more
1.9K
1.5K
+ 1
18
PROS OF APOLLO
  • 12
    From the creators of Meteor
  • 3
    Great documentation
  • 2
    Real time if use subscription
  • 1
    Open source
CONS OF APOLLO
    Be the first to leave a con

    related Apollo posts

    Nick Rockwell
    SVP, Engineering at Fastly · | 44 upvotes · 1.7M views

    When I joined NYT there was already broad dissatisfaction with the LAMP (Linux Apache HTTP Server MySQL PHP) Stack and the front end framework, in particular. So, I wasn't passing judgment on it. I mean, LAMP's fine, you can do good work in LAMP. It's a little dated at this point, but it's not ... I didn't want to rip it out for its own sake, but everyone else was like, "We don't like this, it's really inflexible." And I remember from being outside the company when that was called MIT FIVE when it had launched. And been observing it from the outside, and I was like, you guys took so long to do that and you did it so carefully, and yet you're not happy with your decisions. Why is that? That was more the impetus. If we're going to do this again, how are we going to do it in a way that we're gonna get a better result?

    So we're moving quickly away from LAMP, I would say. So, right now, the new front end is React based and using Apollo. And we've been in a long, protracted, gradual rollout of the core experiences.

    React is now talking to GraphQL as a primary API. There's a Node.js back end, to the front end, which is mainly for server-side rendering, as well.

    Behind there, the main repository for the GraphQL server is a big table repository, that we call Bodega because it's a convenience store. And that reads off of a Kafka pipeline.

    See more
    Adam Neary

    At Airbnb we use GraphQL Unions for a "Backend-Driven UI." We have built a system where a very dynamic page is constructed based on a query that will return an array of some set of possible “sections.” These sections are responsive and define the UI completely.

    The central file that manages this would be a generated file. Since the list of possible sections is quite large (~50 sections today for Search), it also presumes we have a sane mechanism for lazy-loading components with server rendering, which is a topic for another post. Suffice it to say, we do not need to package all possible sections in a massive bundle to account for everything up front.

    Each section component defines its own query fragment, colocated with the section’s component code. This is the general idea of Backend-Driven UI at Airbnb. It’s used in a number of places, including Search, Trip Planner, Host tools, and various landing pages. We use this as our starting point, and then in the demo show how to (1) make and update to an existing section, and (2) add a new section.

    While building your product, you want to be able to explore your schema, discovering field names and testing out potential queries on live development data. We achieve that today with GraphQL Playground, the work of our friends at #Prisma. The tools come standard with Apollo Server.

    #BackendDrivenUI

    See more
    IBM MQ logo

    IBM MQ

    91
    129
    9
    Enterprise-grade messaging middleware
    91
    129
    + 1
    9
    PROS OF IBM MQ
    • 3
      Reliable for banking transactions
    • 2
      Useful for big enteprises
    • 2
      Secure
    • 1
      Many deployment options (containers, cloud, VM etc)
    • 1
      High Availability
    CONS OF IBM MQ
    • 2
      Cost

    related IBM MQ posts

    ZeroMQ logo

    ZeroMQ

    219
    478
    71
    Fast, lightweight messaging library that allows you to design complex communication system without much effort
    219
    478
    + 1
    71
    PROS OF ZEROMQ
    • 24
      Fast
    • 20
      Lightweight
    • 11
      Transport agnostic
    • 7
      No broker required
    • 4
      Low latency
    • 4
      Low level APIs are in C
    • 1
      Open source
    CONS OF ZEROMQ
    • 5
      No message durability
    • 3
      Not a very reliable system - message delivery wise
    • 1
      M x N problem with M producers and N consumers

    related ZeroMQ posts

    Meili Triantafyllidi
    Software engineer at Digital Science · | 5 upvotes · 171.2K views
    Shared insights
    on
    Amazon SQSAmazon SQSRabbitMQRabbitMQZeroMQZeroMQ

    Hi, we are in a ZMQ set up in a push/pull pattern, and we currently start to have more traffic and cases that the service is unavailable or stuck. We want to: * Not loose messages in services outages * Safely restart service without losing messages (ZeroMQ seems to need to close the socket in the receiver before restart manually)

    Do you have experience with this setup with ZeroMQ? Would you suggest RabbitMQ or Amazon SQS (we are in AWS setup) instead? Something else?

    Thank you for your time

    See more
    Amazon SQS logo

    Amazon SQS

    1.9K
    1.6K
    166
    Fully managed message queuing service
    1.9K
    1.6K
    + 1
    166
    PROS OF AMAZON SQS
    • 60
      Easy to use, reliable
    • 39
      Low cost
    • 27
      Simple
    • 13
      Doesn't need to maintain it
    • 8
      It is Serverless
    • 4
      Has a max message size (currently 256K)
    • 3
      Easy to configure with Terraform
    • 3
      Triggers Lambda
    • 3
      Delayed delivery upto 15 mins only
    • 3
      Delayed delivery upto 12 hours
    • 1
      JMS compliant
    • 1
      Support for retry and dead letter queue
    • 1
      D
    CONS OF AMAZON SQS
    • 2
      Has a max message size (currently 256K)
    • 2
      Proprietary
    • 2
      Difficult to configure
    • 1
      Has a maximum 15 minutes of delayed messages only

    related Amazon SQS posts

    Praveen Mooli
    Engineering Manager at Taylor and Francis · | 14 upvotes · 2M views

    We are in the process of building a modern content platform to deliver our content through various channels. We decided to go with Microservices architecture as we wanted scale. Microservice architecture style is an approach to developing an application as a suite of small independently deployable services built around specific business capabilities. You can gain modularity, extensive parallelism and cost-effective scaling by deploying services across many distributed servers. Microservices modularity facilitates independent updates/deployments, and helps to avoid single point of failure, which can help prevent large-scale outages. We also decided to use Event Driven Architecture pattern which is a popular distributed asynchronous architecture pattern used to produce highly scalable applications. The event-driven architecture is made up of highly decoupled, single-purpose event processing components that asynchronously receive and process events.

    To build our #Backend capabilities we decided to use the following: 1. #Microservices - Java with Spring Boot , Node.js with ExpressJS and Python with Flask 2. #Eventsourcingframework - Amazon Kinesis , Amazon Kinesis Firehose , Amazon SNS , Amazon SQS, AWS Lambda 3. #Data - Amazon RDS , Amazon DynamoDB , Amazon S3 , MongoDB Atlas

    To build #Webapps we decided to use Angular 2 with RxJS

    #Devops - GitHub , Travis CI , Terraform , Docker , Serverless

    See more
    Tim Specht
    ‎Co-Founder and CTO at Dubsmash · | 14 upvotes · 622.2K views

    In order to accurately measure & track user behaviour on our platform we moved over quickly from the initial solution using Google Analytics to a custom-built one due to resource & pricing concerns we had.

    While this does sound complicated, it’s as easy as clients sending JSON blobs of events to Amazon Kinesis from where we use AWS Lambda & Amazon SQS to batch and process incoming events and then ingest them into Google BigQuery. Once events are stored in BigQuery (which usually only takes a second from the time the client sends the data until it’s available), we can use almost-standard-SQL to simply query for data while Google makes sure that, even with terabytes of data being scanned, query times stay in the range of seconds rather than hours. Before ingesting their data into the pipeline, our mobile clients are aggregating events internally and, once a certain threshold is reached or the app is going to the background, sending the events as a JSON blob into the stream.

    In the past we had workers running that continuously read from the stream and would validate and post-process the data and then enqueue them for other workers to write them to BigQuery. We went ahead and implemented the Lambda-based approach in such a way that Lambda functions would automatically be triggered for incoming records, pre-aggregate events, and write them back to SQS, from which we then read them, and persist the events to BigQuery. While this approach had a couple of bumps on the road, like re-triggering functions asynchronously to keep up with the stream and proper batch sizes, we finally managed to get it running in a reliable way and are very happy with this solution today.

    #ServerlessTaskProcessing #GeneralAnalytics #RealTimeDataProcessing #BigDataAsAService

    See more
    Celery logo

    Celery

    1.4K
    1.3K
    265
    Distributed task queue
    1.4K
    1.3K
    + 1
    265
    PROS OF CELERY
    • 94
      Task queue
    • 61
      Python integration
    • 37
      Django integration
    • 29
      Scheduled Task
    • 18
      Publish/subsribe
    • 6
      Easy to use
    • 6
      Various backend broker
    • 5
      Great community
    • 4
      Workflow
    • 4
      Free
    • 1
      Dynamic
    CONS OF CELERY
    • 4
      Sometimes loses tasks
    • 1
      Depends on broker

    related Celery posts

    James Cunningham
    Operations Engineer at Sentry · | 18 upvotes · 1.3M views
    Shared insights
    on
    CeleryCeleryRabbitMQRabbitMQ
    at

    As Sentry runs throughout the day, there are about 50 different offline tasks that we execute—anything from “process this event, pretty please” to “send all of these cool people some emails.” There are some that we execute once a day and some that execute thousands per second.

    Managing this variety requires a reliably high-throughput message-passing technology. We use Celery's RabbitMQ implementation, and we stumbled upon a great feature called Federation that allows us to partition our task queue across any number of RabbitMQ servers and gives us the confidence that, if any single server gets backlogged, others will pitch in and distribute some of the backlogged tasks to their consumers.

    #MessageQueue

    See more
    Pulkit Sapra

    Hi! I am creating a scraping system in Django, which involves long running tasks between 1 minute & 1 Day. As I am new to Message Brokers and Task Queues, I need advice on which architecture to use for my system. ( Amazon SQS, RabbitMQ, or Celery). The system should be autoscalable using Kubernetes(K8) based on the number of pending tasks in the queue.

    See more
    MQTT logo

    MQTT

    361
    391
    4
    A machine-to-machine Internet of Things connectivity protocol
    361
    391
    + 1
    4
    PROS OF MQTT
    • 2
      Varying levels of Quality of Service to fit a range of
    • 1
      Very easy to configure and use with open source tools
    • 1
      Lightweight with a relatively small data footprint
    CONS OF MQTT
    • 1
      Easy to configure in an unsecure manner

    related MQTT posts