Alternatives to ActiveMQ logo

Alternatives to ActiveMQ

RabbitMQ, Kafka, Apollo, IBM MQ, and ZeroMQ are the most popular alternatives and competitors to ActiveMQ.
610
1.3K
+ 1
77

What is ActiveMQ and what are its top alternatives?

ActiveMQ is a popular open-source message broker written in Java that provides JMS (Java Message Service) support. It offers features such as high availability, message persistence, clustering, and support for various messaging protocols. However, some limitations of ActiveMQ include complex setup and configuration, potential performance issues under heavy loads, and lack of robust monitoring capabilities.

  1. RabbitMQ: RabbitMQ is a robust message broker that supports multiple messaging protocols such as AMQP, MQTT, and STOMP. Key features include high availability, clustering, and flexible routing capabilities. Pros include strong community support, extensive documentation, and a variety of client libraries. Cons compared to ActiveMQ include a steeper learning curve for beginners and more limited support for JMS.

  2. Kafka: Apache Kafka is a distributed streaming platform known for its high throughput and low latency. It is capable of handling real-time data feeds and offers features like fault tolerance, horizontal scalability, and support for complex event processing. Pros of Kafka include excellent performance, fault tolerance, and scalability, while cons include a more specialized use case compared to ActiveMQ and a different messaging model.

  3. NATS: NATS is a lightweight and high-performance messaging system that focuses on simplicity and speed. It offers features like publish-subscribe messaging, request-reply patterns, and support for clustering. Pros of NATS include simplicity, speed, and ease of use, while cons compared to ActiveMQ include less advanced features and a smaller community.

  4. Apache Pulsar: Apache Pulsar is a cloud-native, distributed messaging system that offers features like multi-tenancy, geo-replication, and support for a wide range of messaging patterns. Pros of Pulsar include scalability, performance, and support for modern cloud architectures, while cons compared to ActiveMQ include a newer project with potentially less mature features.

  5. Amazon SQS: Amazon Simple Queue Service (SQS) is a fully managed message queuing service provided by AWS. It offers features like high availability, durability, and scalability without the need for managing infrastructure. Pros of SQS include ease of use, reliability, and integration with other AWS services, while cons compared to ActiveMQ include vendor lock-in and potentially higher costs.

  6. Redis: Redis is an in-memory data structure store that can be used as a message broker with its pub/sub capabilities. It offers features like high performance, data persistence, and support for various data types. Pros of Redis include speed, simplicity, and versatility, while cons compared to ActiveMQ include less advanced messaging features and persistence options.

  7. ZeroMQ: ZeroMQ is a lightweight messaging library that enables fast, asynchronous messaging between applications. It provides features like various messaging patterns, high performance, and low latency. Pros of ZeroMQ include speed, flexibility, and simplicity, while cons compared to ActiveMQ include less built-in support for advanced messaging features and clustering.

  8. IBM MQ: IBM MQ is a messaging middleware that provides reliable messaging between applications and systems. It offers features like guaranteed message delivery, scalability, and support for various platforms. Pros of IBM MQ include enterprise-grade reliability, extensive platform support, and robust security features, while cons compared to ActiveMQ include potential higher costs and a more complex setup process.

  9. HornetQ: HornetQ is an open-source messaging system that provides JMS support and high-performance messaging capabilities. It offers features like clustering, message redistribution, and support for large message sizes. Pros of HornetQ include performance, JMS support, and clustering capabilities, while cons compared to ActiveMQ include potential issues with documentation and community support.

  10. RocketMQ: Apache RocketMQ is a distributed messaging and streaming platform that offers features like reliability, scalability, and support for real-time message processing. Pros of RocketMQ include performance, high availability, and support for big data scenarios, while cons compared to ActiveMQ include potentially less mature features and a smaller community.

Top Alternatives to ActiveMQ

  • RabbitMQ
    RabbitMQ

    RabbitMQ gives your applications a common platform to send and receive messages, and your messages a safe place to live until received. ...

  • Kafka
    Kafka

    Kafka is a distributed, partitioned, replicated commit log service. It provides the functionality of a messaging system, but with a unique design. ...

  • Apollo
    Apollo

    Build a universal GraphQL API on top of your existing REST APIs, so you can ship new application features fast without waiting on backend changes. ...

  • IBM MQ
    IBM MQ

    It is a messaging middleware that simplifies and accelerates the integration of diverse applications and business data across multiple platforms. It offers proven, enterprise-grade messaging capabilities that skillfully and safely move information. ...

  • ZeroMQ
    ZeroMQ

    The 0MQ lightweight messaging kernel is a library which extends the standard socket interfaces with features traditionally provided by specialised messaging middleware products. 0MQ sockets provide an abstraction of asynchronous message queues, multiple messaging patterns, message filtering (subscriptions), seamless access to multiple transport protocols and more. ...

  • MySQL
    MySQL

    The MySQL software delivers a very fast, multi-threaded, multi-user, and robust SQL (Structured Query Language) database server. MySQL Server is intended for mission-critical, heavy-load production systems as well as for embedding into mass-deployed software. ...

  • PostgreSQL
    PostgreSQL

    PostgreSQL is an advanced object-relational database management system that supports an extended subset of the SQL standard, including transactions, foreign keys, subqueries, triggers, user-defined types and functions. ...

  • MongoDB
    MongoDB

    MongoDB stores data in JSON-like documents that can vary in structure, offering a dynamic, flexible schema. MongoDB was also designed for high availability and scalability, with built-in replication and auto-sharding. ...

ActiveMQ alternatives & related posts

RabbitMQ logo

RabbitMQ

21.3K
557
Open source multiprotocol messaging broker
21.3K
557
PROS OF RABBITMQ
  • 235
    It's fast and it works with good metrics/monitoring
  • 80
    Ease of configuration
  • 60
    I like the admin interface
  • 52
    Easy to set-up and start with
  • 22
    Durable
  • 19
    Standard protocols
  • 19
    Intuitive work through python
  • 11
    Written primarily in Erlang
  • 9
    Simply superb
  • 7
    Completeness of messaging patterns
  • 4
    Reliable
  • 4
    Scales to 1 million messages per second
  • 3
    Better than most traditional queue based message broker
  • 3
    Distributed
  • 3
    Supports MQTT
  • 3
    Supports AMQP
  • 2
    Clear documentation with different scripting language
  • 2
    Better routing system
  • 2
    Inubit Integration
  • 2
    Great ui
  • 2
    High performance
  • 2
    Reliability
  • 2
    Open-source
  • 2
    Runs on Open Telecom Platform
  • 2
    Clusterable
  • 2
    Delayed messages
  • 1
    Supports Streams
  • 1
    Supports STOMP
  • 1
    Supports JMS
CONS OF RABBITMQ
  • 9
    Too complicated cluster/HA config and management
  • 6
    Needs Erlang runtime. Need ops good with Erlang runtime
  • 5
    Configuration must be done first, not by your code
  • 4
    Slow

related RabbitMQ posts

James Cunningham
Operations Engineer at Sentry · | 18 upvotes · 1.8M views
Shared insights
on
CeleryCeleryRabbitMQRabbitMQ
at

As Sentry runs throughout the day, there are about 50 different offline tasks that we execute—anything from “process this event, pretty please” to “send all of these cool people some emails.” There are some that we execute once a day and some that execute thousands per second.

Managing this variety requires a reliably high-throughput message-passing technology. We use Celery's RabbitMQ implementation, and we stumbled upon a great feature called Federation that allows us to partition our task queue across any number of RabbitMQ servers and gives us the confidence that, if any single server gets backlogged, others will pitch in and distribute some of the backlogged tasks to their consumers.

#MessageQueue

See more

Around the time of their Series A, Pinterest’s stack included Python and Django, with Tornado and Node.js as web servers. Memcached / Membase and Redis handled caching, with RabbitMQ handling queueing. Nginx, HAproxy and Varnish managed static-delivery and load-balancing, with persistent data storage handled by MySQL.

See more
Kafka logo

Kafka

23.5K
607
Distributed, fault tolerant, high throughput pub-sub messaging system
23.5K
607
PROS OF KAFKA
  • 126
    High-throughput
  • 119
    Distributed
  • 92
    Scalable
  • 86
    High-Performance
  • 66
    Durable
  • 38
    Publish-Subscribe
  • 19
    Simple-to-use
  • 18
    Open source
  • 12
    Written in Scala and java. Runs on JVM
  • 9
    Message broker + Streaming system
  • 4
    KSQL
  • 4
    Avro schema integration
  • 4
    Robust
  • 3
    Suport Multiple clients
  • 2
    Extremely good parallelism constructs
  • 2
    Partioned, replayable log
  • 1
    Simple publisher / multi-subscriber model
  • 1
    Fun
  • 1
    Flexible
CONS OF KAFKA
  • 32
    Non-Java clients are second-class citizens
  • 29
    Needs Zookeeper
  • 9
    Operational difficulties
  • 5
    Terrible Packaging

related Kafka posts

Nick Rockwell
SVP, Engineering at Fastly · | 46 upvotes · 4.1M views

When I joined NYT there was already broad dissatisfaction with the LAMP (Linux Apache HTTP Server MySQL PHP) Stack and the front end framework, in particular. So, I wasn't passing judgment on it. I mean, LAMP's fine, you can do good work in LAMP. It's a little dated at this point, but it's not ... I didn't want to rip it out for its own sake, but everyone else was like, "We don't like this, it's really inflexible." And I remember from being outside the company when that was called MIT FIVE when it had launched. And been observing it from the outside, and I was like, you guys took so long to do that and you did it so carefully, and yet you're not happy with your decisions. Why is that? That was more the impetus. If we're going to do this again, how are we going to do it in a way that we're gonna get a better result?

So we're moving quickly away from LAMP, I would say. So, right now, the new front end is React based and using Apollo. And we've been in a long, protracted, gradual rollout of the core experiences.

React is now talking to GraphQL as a primary API. There's a Node.js back end, to the front end, which is mainly for server-side rendering, as well.

Behind there, the main repository for the GraphQL server is a big table repository, that we call Bodega because it's a convenience store. And that reads off of a Kafka pipeline.

See more
Ashish Singh
Tech Lead, Big Data Platform at Pinterest · | 38 upvotes · 3.3M views

To provide employees with the critical need of interactive querying, we’ve worked with Presto, an open-source distributed SQL query engine, over the years. Operating Presto at Pinterest’s scale has involved resolving quite a few challenges like, supporting deeply nested and huge thrift schemas, slow/ bad worker detection and remediation, auto-scaling cluster, graceful cluster shutdown and impersonation support for ldap authenticator.

Our infrastructure is built on top of Amazon EC2 and we leverage Amazon S3 for storing our data. This separates compute and storage layers, and allows multiple compute clusters to share the S3 data.

We have hundreds of petabytes of data and tens of thousands of Apache Hive tables. Our Presto clusters are comprised of a fleet of 450 r4.8xl EC2 instances. Presto clusters together have over 100 TBs of memory and 14K vcpu cores. Within Pinterest, we have close to more than 1,000 monthly active users (out of total 1,600+ Pinterest employees) using Presto, who run about 400K queries on these clusters per month.

Each query submitted to Presto cluster is logged to a Kafka topic via Singer. Singer is a logging agent built at Pinterest and we talked about it in a previous post. Each query is logged when it is submitted and when it finishes. When a Presto cluster crashes, we will have query submitted events without corresponding query finished events. These events enable us to capture the effect of cluster crashes over time.

Each Presto cluster at Pinterest has workers on a mix of dedicated AWS EC2 instances and Kubernetes pods. Kubernetes platform provides us with the capability to add and remove workers from a Presto cluster very quickly. The best-case latency on bringing up a new worker on Kubernetes is less than a minute. However, when the Kubernetes cluster itself is out of resources and needs to scale up, it can take up to ten minutes. Some other advantages of deploying on Kubernetes platform is that our Presto deployment becomes agnostic of cloud vendor, instance types, OS, etc.

#BigData #AWS #DataScience #DataEngineering

See more
Apollo logo

Apollo

2.4K
25
GraphQL server for Express, Connect, Hapi, Koa and more
2.4K
25
PROS OF APOLLO
  • 12
    From the creators of Meteor
  • 8
    Great documentation
  • 3
    Open source
  • 2
    Real time if use subscription
CONS OF APOLLO
  • 1
    File upload is not supported
  • 1
    Increase in complexity of implementing (subscription)

related Apollo posts

Nick Rockwell
SVP, Engineering at Fastly · | 46 upvotes · 4.1M views

When I joined NYT there was already broad dissatisfaction with the LAMP (Linux Apache HTTP Server MySQL PHP) Stack and the front end framework, in particular. So, I wasn't passing judgment on it. I mean, LAMP's fine, you can do good work in LAMP. It's a little dated at this point, but it's not ... I didn't want to rip it out for its own sake, but everyone else was like, "We don't like this, it's really inflexible." And I remember from being outside the company when that was called MIT FIVE when it had launched. And been observing it from the outside, and I was like, you guys took so long to do that and you did it so carefully, and yet you're not happy with your decisions. Why is that? That was more the impetus. If we're going to do this again, how are we going to do it in a way that we're gonna get a better result?

So we're moving quickly away from LAMP, I would say. So, right now, the new front end is React based and using Apollo. And we've been in a long, protracted, gradual rollout of the core experiences.

React is now talking to GraphQL as a primary API. There's a Node.js back end, to the front end, which is mainly for server-side rendering, as well.

Behind there, the main repository for the GraphQL server is a big table repository, that we call Bodega because it's a convenience store. And that reads off of a Kafka pipeline.

See more
Adam Neary

At Airbnb we use GraphQL Unions for a "Backend-Driven UI." We have built a system where a very dynamic page is constructed based on a query that will return an array of some set of possible “sections.” These sections are responsive and define the UI completely.

The central file that manages this would be a generated file. Since the list of possible sections is quite large (~50 sections today for Search), it also presumes we have a sane mechanism for lazy-loading components with server rendering, which is a topic for another post. Suffice it to say, we do not need to package all possible sections in a massive bundle to account for everything up front.

Each section component defines its own query fragment, colocated with the section’s component code. This is the general idea of Backend-Driven UI at Airbnb. It’s used in a number of places, including Search, Trip Planner, Host tools, and various landing pages. We use this as our starting point, and then in the demo show how to (1) make and update to an existing section, and (2) add a new section.

While building your product, you want to be able to explore your schema, discovering field names and testing out potential queries on live development data. We achieve that today with GraphQL Playground, the work of our friends at #Prisma. The tools come standard with Apollo Server.

#BackendDrivenUI

See more
IBM MQ logo

IBM MQ

114
11
Enterprise-grade messaging middleware
114
11
PROS OF IBM MQ
  • 3
    Reliable for banking transactions
  • 3
    Useful for big enteprises
  • 2
    Secure
  • 1
    Broader connectivity - more protocols, APIs, Files etc
  • 1
    Many deployment options (containers, cloud, VM etc)
  • 1
    High Availability
CONS OF IBM MQ
  • 2
    Cost

related IBM MQ posts

Shared insights
on
Azure Service BusAzure Service BusIBM MQIBM MQ

Want to get the differences in features and enhancement, pros and cons, and also how to Migrate from IBM MQ to Azure Service Bus.

See more
ZeroMQ logo

ZeroMQ

260
71
Fast, lightweight messaging library that allows you to design complex communication system without much effort
260
71
PROS OF ZEROMQ
  • 23
    Fast
  • 20
    Lightweight
  • 11
    Transport agnostic
  • 7
    No broker required
  • 4
    Low level APIs are in C
  • 4
    Low latency
  • 1
    Open source
  • 1
    Publish-Subscribe
CONS OF ZEROMQ
  • 5
    No message durability
  • 3
    Not a very reliable system - message delivery wise
  • 1
    M x N problem with M producers and N consumers

related ZeroMQ posts

Shared insights
on
MongoDBMongoDBZeroMQZeroMQSpring BootSpring Boot

In our Spring Boot application, which encompasses various projects, we employ ZeroMQ (ZMQ) for communication via a req/resp pattern. Recently, I observed that data is persisted in the MongoDB database before being transmitted to other applications. I've identified a method to monitor changes to the database, and I'm contemplating whether to utilize this monitoring approach to detect changes and execute the necessary instructions.

Which approach is more advisable in this scenario: leveraging the database monitoring mechanism or sticking with the current ZMQ req/resp communication?

Essentially, I'm seeking guidance on whether to rely on database monitoring for change detection and subsequent actions or to continue with the existing ZMQ communication pattern.

See more
Meili Triantafyllidi
Software engineer at Digital Science · | 6 upvotes · 478.3K views
Shared insights
on
Amazon SQSAmazon SQSRabbitMQRabbitMQZeroMQZeroMQ

Hi, we are in a ZMQ set up in a push/pull pattern, and we currently start to have more traffic and cases that the service is unavailable or stuck. We want to: * Not loose messages in services outages * Safely restart service without losing messages (ZeroMQ seems to need to close the socket in the receiver before restart manually)

Do you have experience with this setup with ZeroMQ? Would you suggest RabbitMQ or Amazon SQS (we are in AWS setup) instead? Something else?

Thank you for your time

See more
MySQL logo

MySQL

125.4K
3.8K
The world's most popular open source database
125.4K
3.8K
PROS OF MYSQL
  • 800
    Sql
  • 679
    Free
  • 562
    Easy
  • 528
    Widely used
  • 490
    Open source
  • 180
    High availability
  • 160
    Cross-platform support
  • 104
    Great community
  • 79
    Secure
  • 75
    Full-text indexing and searching
  • 26
    Fast, open, available
  • 16
    Reliable
  • 16
    SSL support
  • 15
    Robust
  • 9
    Enterprise Version
  • 7
    Easy to set up on all platforms
  • 3
    NoSQL access to JSON data type
  • 1
    Relational database
  • 1
    Easy, light, scalable
  • 1
    Sequel Pro (best SQL GUI)
  • 1
    Replica Support
CONS OF MYSQL
  • 16
    Owned by a company with their own agenda
  • 3
    Can't roll back schema changes

related MySQL posts

Nick Rockwell
SVP, Engineering at Fastly · | 46 upvotes · 4.1M views

When I joined NYT there was already broad dissatisfaction with the LAMP (Linux Apache HTTP Server MySQL PHP) Stack and the front end framework, in particular. So, I wasn't passing judgment on it. I mean, LAMP's fine, you can do good work in LAMP. It's a little dated at this point, but it's not ... I didn't want to rip it out for its own sake, but everyone else was like, "We don't like this, it's really inflexible." And I remember from being outside the company when that was called MIT FIVE when it had launched. And been observing it from the outside, and I was like, you guys took so long to do that and you did it so carefully, and yet you're not happy with your decisions. Why is that? That was more the impetus. If we're going to do this again, how are we going to do it in a way that we're gonna get a better result?

So we're moving quickly away from LAMP, I would say. So, right now, the new front end is React based and using Apollo. And we've been in a long, protracted, gradual rollout of the core experiences.

React is now talking to GraphQL as a primary API. There's a Node.js back end, to the front end, which is mainly for server-side rendering, as well.

Behind there, the main repository for the GraphQL server is a big table repository, that we call Bodega because it's a convenience store. And that reads off of a Kafka pipeline.

See more
Tim Abbott

We've been using PostgreSQL since the very early days of Zulip, but we actually didn't use it from the beginning. Zulip started out as a MySQL project back in 2012, because we'd heard it was a good choice for a startup with a wide community. However, we found that even though we were using the Django ORM for most of our database access, we spent a lot of time fighting with MySQL. Issues ranged from bad collation defaults, to bad query plans which required a lot of manual query tweaks.

We ended up getting so frustrated that we tried out PostgresQL, and the results were fantastic. We didn't have to do any real customization (just some tuning settings for how big a server we had), and all of our most important queries were faster out of the box. As a result, we were able to delete a bunch of custom queries escaping the ORM that we'd written to make the MySQL query planner happy (because postgres just did the right thing automatically).

And then after that, we've just gotten a ton of value out of postgres. We use its excellent built-in full-text search, which has helped us avoid needing to bring in a tool like Elasticsearch, and we've really enjoyed features like its partial indexes, which saved us a lot of work adding unnecessary extra tables to get good performance for things like our "unread messages" and "starred messages" indexes.

I can't recommend it highly enough.

See more
PostgreSQL logo

PostgreSQL

98.3K
3.5K
A powerful, open source object-relational database system
98.3K
3.5K
PROS OF POSTGRESQL
  • 764
    Relational database
  • 510
    High availability
  • 439
    Enterprise class database
  • 383
    Sql
  • 304
    Sql + nosql
  • 173
    Great community
  • 147
    Easy to setup
  • 131
    Heroku
  • 130
    Secure by default
  • 113
    Postgis
  • 50
    Supports Key-Value
  • 48
    Great JSON support
  • 34
    Cross platform
  • 33
    Extensible
  • 28
    Replication
  • 26
    Triggers
  • 23
    Multiversion concurrency control
  • 23
    Rollback
  • 21
    Open source
  • 18
    Heroku Add-on
  • 17
    Stable, Simple and Good Performance
  • 15
    Powerful
  • 13
    Lets be serious, what other SQL DB would you go for?
  • 11
    Good documentation
  • 9
    Scalable
  • 8
    Free
  • 8
    Reliable
  • 8
    Intelligent optimizer
  • 7
    Transactional DDL
  • 7
    Modern
  • 6
    One stop solution for all things sql no matter the os
  • 5
    Relational database with MVCC
  • 5
    Faster Development
  • 4
    Full-Text Search
  • 4
    Developer friendly
  • 3
    Excellent source code
  • 3
    Free version
  • 3
    Great DB for Transactional system or Application
  • 3
    Relational datanbase
  • 3
    search
  • 3
    Open-source
  • 2
    Text
  • 2
    Full-text
  • 1
    Can handle up to petabytes worth of size
  • 1
    Composability
  • 1
    Multiple procedural languages supported
  • 0
    Native
CONS OF POSTGRESQL
  • 10
    Table/index bloatings

related PostgreSQL posts

Simon Reymann
Senior Fullstack Developer at QUANTUSflow Software GmbH · | 30 upvotes · 11.2M views

Our whole DevOps stack consists of the following tools:

  • GitHub (incl. GitHub Pages/Markdown for Documentation, GettingStarted and HowTo's) for collaborative review and code management tool
  • Respectively Git as revision control system
  • SourceTree as Git GUI
  • Visual Studio Code as IDE
  • CircleCI for continuous integration (automatize development process)
  • Prettier / TSLint / ESLint as code linter
  • SonarQube as quality gate
  • Docker as container management (incl. Docker Compose for multi-container application management)
  • VirtualBox for operating system simulation tests
  • Kubernetes as cluster management for docker containers
  • Heroku for deploying in test environments
  • nginx as web server (preferably used as facade server in production environment)
  • SSLMate (using OpenSSL) for certificate management
  • Amazon EC2 (incl. Amazon S3) for deploying in stage (production-like) and production environments
  • PostgreSQL as preferred database system
  • Redis as preferred in-memory database/store (great for caching)

The main reason we have chosen Kubernetes over Docker Swarm is related to the following artifacts:

  • Key features: Easy and flexible installation, Clear dashboard, Great scaling operations, Monitoring is an integral part, Great load balancing concepts, Monitors the condition and ensures compensation in the event of failure.
  • Applications: An application can be deployed using a combination of pods, deployments, and services (or micro-services).
  • Functionality: Kubernetes as a complex installation and setup process, but it not as limited as Docker Swarm.
  • Monitoring: It supports multiple versions of logging and monitoring when the services are deployed within the cluster (Elasticsearch/Kibana (ELK), Heapster/Grafana, Sysdig cloud integration).
  • Scalability: All-in-one framework for distributed systems.
  • Other Benefits: Kubernetes is backed by the Cloud Native Computing Foundation (CNCF), huge community among container orchestration tools, it is an open source and modular tool that works with any OS.
See more
Jeyabalaji Subramanian

Recently we were looking at a few robust and cost-effective ways of replicating the data that resides in our production MongoDB to a PostgreSQL database for data warehousing and business intelligence.

We set ourselves the following criteria for the optimal tool that would do this job: - The data replication must be near real-time, yet it should NOT impact the production database - The data replication must be horizontally scalable (based on the load), asynchronous & crash-resilient

Based on the above criteria, we selected the following tools to perform the end to end data replication:

We chose MongoDB Stitch for picking up the changes in the source database. It is the serverless platform from MongoDB. One of the services offered by MongoDB Stitch is Stitch Triggers. Using stitch triggers, you can execute a serverless function (in Node.js) in real time in response to changes in the database. When there are a lot of database changes, Stitch automatically "feeds forward" these changes through an asynchronous queue.

We chose Amazon SQS as the pipe / message backbone for communicating the changes from MongoDB to our own replication service. Interestingly enough, MongoDB stitch offers integration with AWS services.

In the Node.js function, we wrote minimal functionality to communicate the database changes (insert / update / delete / replace) to Amazon SQS.

Next we wrote a minimal micro-service in Python to listen to the message events on SQS, pickup the data payload & mirror the DB changes on to the target Data warehouse. We implemented source data to target data translation by modelling target table structures through SQLAlchemy . We deployed this micro-service as AWS Lambda with Zappa. With Zappa, deploying your services as event-driven & horizontally scalable Lambda service is dumb-easy.

In the end, we got to implement a highly scalable near realtime Change Data Replication service that "works" and deployed to production in a matter of few days!

See more
MongoDB logo

MongoDB

93.6K
4.1K
The database for giant ideas
93.6K
4.1K
PROS OF MONGODB
  • 828
    Document-oriented storage
  • 593
    No sql
  • 553
    Ease of use
  • 464
    Fast
  • 410
    High performance
  • 255
    Free
  • 218
    Open source
  • 180
    Flexible
  • 145
    Replication & high availability
  • 112
    Easy to maintain
  • 42
    Querying
  • 39
    Easy scalability
  • 38
    Auto-sharding
  • 37
    High availability
  • 31
    Map/reduce
  • 27
    Document database
  • 25
    Easy setup
  • 25
    Full index support
  • 16
    Reliable
  • 15
    Fast in-place updates
  • 14
    Agile programming, flexible, fast
  • 12
    No database migrations
  • 8
    Easy integration with Node.Js
  • 8
    Enterprise
  • 6
    Enterprise Support
  • 5
    Great NoSQL DB
  • 4
    Support for many languages through different drivers
  • 3
    Schemaless
  • 3
    Aggregation Framework
  • 3
    Drivers support is good
  • 2
    Fast
  • 2
    Managed service
  • 2
    Easy to Scale
  • 2
    Awesome
  • 2
    Consistent
  • 1
    Good GUI
  • 1
    Acid Compliant
CONS OF MONGODB
  • 6
    Very slowly for connected models that require joins
  • 3
    Not acid compliant
  • 2
    Proprietary query language

related MongoDB posts

Jeyabalaji Subramanian

Recently we were looking at a few robust and cost-effective ways of replicating the data that resides in our production MongoDB to a PostgreSQL database for data warehousing and business intelligence.

We set ourselves the following criteria for the optimal tool that would do this job: - The data replication must be near real-time, yet it should NOT impact the production database - The data replication must be horizontally scalable (based on the load), asynchronous & crash-resilient

Based on the above criteria, we selected the following tools to perform the end to end data replication:

We chose MongoDB Stitch for picking up the changes in the source database. It is the serverless platform from MongoDB. One of the services offered by MongoDB Stitch is Stitch Triggers. Using stitch triggers, you can execute a serverless function (in Node.js) in real time in response to changes in the database. When there are a lot of database changes, Stitch automatically "feeds forward" these changes through an asynchronous queue.

We chose Amazon SQS as the pipe / message backbone for communicating the changes from MongoDB to our own replication service. Interestingly enough, MongoDB stitch offers integration with AWS services.

In the Node.js function, we wrote minimal functionality to communicate the database changes (insert / update / delete / replace) to Amazon SQS.

Next we wrote a minimal micro-service in Python to listen to the message events on SQS, pickup the data payload & mirror the DB changes on to the target Data warehouse. We implemented source data to target data translation by modelling target table structures through SQLAlchemy . We deployed this micro-service as AWS Lambda with Zappa. With Zappa, deploying your services as event-driven & horizontally scalable Lambda service is dumb-easy.

In the end, we got to implement a highly scalable near realtime Change Data Replication service that "works" and deployed to production in a matter of few days!

See more
Robert Zuber

We use MongoDB as our primary #datastore. Mongo's approach to replica sets enables some fantastic patterns for operations like maintenance, backups, and #ETL.

As we pull #microservices from our #monolith, we are taking the opportunity to build them with their own datastores using PostgreSQL. We also use Redis to cache data we’d never store permanently, and to rate-limit our requests to partners’ APIs (like GitHub).

When we’re dealing with large blobs of immutable data (logs, artifacts, and test results), we store them in Amazon S3. We handle any side-effects of S3’s eventual consistency model within our own code. This ensures that we deal with user requests correctly while writes are in process.

See more