Alternatives to Chronix logo

Alternatives to Chronix

MySQL, PostgreSQL, MongoDB, Microsoft SQL Server, and MariaDB are the most popular alternatives and competitors to Chronix.
2
11
+ 1
0

What is Chronix and what are its top alternatives?

Chronix is built to store time series highly compressed and for fast access times. In comparison to related time series databases, Chronix does not only take 5 to 171 times less space, but it also shaves off 83% of the access time, and up to 78% off the runtime on a mix of real world queries.
Chronix is a tool in the Databases category of a tech stack.
Chronix is an open source tool with 252 GitHub stars and 25 GitHub forks. Here’s a link to Chronix's open source repository on GitHub

Chronix alternatives & related posts

MySQL logo

MySQL

23.7K
18.3K
3.7K
23.7K
18.3K
+ 1
3.7K
The world's most popular open source database
MySQL logo
MySQL
VS
Chronix logo
Chronix

related MySQL posts

Tim Abbott
Tim Abbott
Founder at Zulip · | 20 upvotes · 109K views
atZulipZulip
PostgreSQL
PostgreSQL
MySQL
MySQL
Elasticsearch
Elasticsearch

We've been using PostgreSQL since the very early days of Zulip, but we actually didn't use it from the beginning. Zulip started out as a MySQL project back in 2012, because we'd heard it was a good choice for a startup with a wide community. However, we found that even though we were using the Django ORM for most of our database access, we spent a lot of time fighting with MySQL. Issues ranged from bad collation defaults, to bad query plans which required a lot of manual query tweaks.

We ended up getting so frustrated that we tried out PostgresQL, and the results were fantastic. We didn't have to do any real customization (just some tuning settings for how big a server we had), and all of our most important queries were faster out of the box. As a result, we were able to delete a bunch of custom queries escaping the ORM that we'd written to make the MySQL query planner happy (because postgres just did the right thing automatically).

And then after that, we've just gotten a ton of value out of postgres. We use its excellent built-in full-text search, which has helped us avoid needing to bring in a tool like Elasticsearch, and we've really enjoyed features like its partial indexes, which saved us a lot of work adding unnecessary extra tables to get good performance for things like our "unread messages" and "starred messages" indexes.

I can't recommend it highly enough.

See more
Julien DeFrance
Julien DeFrance
Principal Software Engineer at Tophatter · | 16 upvotes · 477.2K views
atSmartZipSmartZip
Rails
Rails
Rails API
Rails API
AWS Elastic Beanstalk
AWS Elastic Beanstalk
Capistrano
Capistrano
Docker
Docker
Amazon S3
Amazon S3
Amazon RDS
Amazon RDS
MySQL
MySQL
Amazon RDS for Aurora
Amazon RDS for Aurora
Amazon ElastiCache
Amazon ElastiCache
Memcached
Memcached
Amazon CloudFront
Amazon CloudFront
Segment
Segment
Zapier
Zapier
Amazon Redshift
Amazon Redshift
Amazon Quicksight
Amazon Quicksight
Superset
Superset
Elasticsearch
Elasticsearch
Amazon Elasticsearch Service
Amazon Elasticsearch Service
New Relic
New Relic
AWS Lambda
AWS Lambda
Node.js
Node.js
Ruby
Ruby
Amazon DynamoDB
Amazon DynamoDB
Algolia
Algolia

Back in 2014, I was given an opportunity to re-architect SmartZip Analytics platform, and flagship product: SmartTargeting. This is a SaaS software helping real estate professionals keeping up with their prospects and leads in a given neighborhood/territory, finding out (thanks to predictive analytics) who's the most likely to list/sell their home, and running cross-channel marketing automation against them: direct mail, online ads, email... The company also does provide Data APIs to Enterprise customers.

I had inherited years and years of technical debt and I knew things had to change radically. The first enabler to this was to make use of the cloud and go with AWS, so we would stop re-inventing the wheel, and build around managed/scalable services.

For the SaaS product, we kept on working with Rails as this was what my team had the most knowledge in. We've however broken up the monolith and decoupled the front-end application from the backend thanks to the use of Rails API so we'd get independently scalable micro-services from now on.

Our various applications could now be deployed using AWS Elastic Beanstalk so we wouldn't waste any more efforts writing time-consuming Capistrano deployment scripts for instance. Combined with Docker so our application would run within its own container, independently from the underlying host configuration.

Storage-wise, we went with Amazon S3 and ditched any pre-existing local or network storage people used to deal with in our legacy systems. On the database side: Amazon RDS / MySQL initially. Ultimately migrated to Amazon RDS for Aurora / MySQL when it got released. Once again, here you need a managed service your cloud provider handles for you.

Future improvements / technology decisions included:

Caching: Amazon ElastiCache / Memcached CDN: Amazon CloudFront Systems Integration: Segment / Zapier Data-warehousing: Amazon Redshift BI: Amazon Quicksight / Superset Search: Elasticsearch / Amazon Elasticsearch Service / Algolia Monitoring: New Relic

As our usage grows, patterns changed, and/or our business needs evolved, my role as Engineering Manager then Director of Engineering was also to ensure my team kept on learning and innovating, while delivering on business value.

One of these innovations was to get ourselves into Serverless : Adopting AWS Lambda was a big step forward. At the time, only available for Node.js (Not Ruby ) but a great way to handle cost efficiency, unpredictable traffic, sudden bursts of traffic... Ultimately you want the whole chain of services involved in a call to be serverless, and that's when we've started leveraging Amazon DynamoDB on these projects so they'd be fully scalable.

See more
PostgreSQL logo

PostgreSQL

17.3K
13.1K
3.4K
17.3K
13.1K
+ 1
3.4K
A powerful, open source object-relational database system
PostgreSQL logo
PostgreSQL
VS
Chronix logo
Chronix

related PostgreSQL posts

Jeyabalaji Subramanian
Jeyabalaji Subramanian
CTO at FundsCorner · | 24 upvotes · 340K views
atFundsCornerFundsCorner
MongoDB
MongoDB
PostgreSQL
PostgreSQL
MongoDB Stitch
MongoDB Stitch
Node.js
Node.js
Amazon SQS
Amazon SQS
Python
Python
SQLAlchemy
SQLAlchemy
AWS Lambda
AWS Lambda
Zappa
Zappa

Recently we were looking at a few robust and cost-effective ways of replicating the data that resides in our production MongoDB to a PostgreSQL database for data warehousing and business intelligence.

We set ourselves the following criteria for the optimal tool that would do this job: - The data replication must be near real-time, yet it should NOT impact the production database - The data replication must be horizontally scalable (based on the load), asynchronous & crash-resilient

Based on the above criteria, we selected the following tools to perform the end to end data replication:

We chose MongoDB Stitch for picking up the changes in the source database. It is the serverless platform from MongoDB. One of the services offered by MongoDB Stitch is Stitch Triggers. Using stitch triggers, you can execute a serverless function (in Node.js) in real time in response to changes in the database. When there are a lot of database changes, Stitch automatically "feeds forward" these changes through an asynchronous queue.

We chose Amazon SQS as the pipe / message backbone for communicating the changes from MongoDB to our own replication service. Interestingly enough, MongoDB stitch offers integration with AWS services.

In the Node.js function, we wrote minimal functionality to communicate the database changes (insert / update / delete / replace) to Amazon SQS.

Next we wrote a minimal micro-service in Python to listen to the message events on SQS, pickup the data payload & mirror the DB changes on to the target Data warehouse. We implemented source data to target data translation by modelling target table structures through SQLAlchemy . We deployed this micro-service as AWS Lambda with Zappa. With Zappa, deploying your services as event-driven & horizontally scalable Lambda service is dumb-easy.

In the end, we got to implement a highly scalable near realtime Change Data Replication service that "works" and deployed to production in a matter of few days!

See more
Robert Zuber
Robert Zuber
CTO at CircleCI · | 22 upvotes · 211.8K views
atCircleCICircleCI
MongoDB
MongoDB
PostgreSQL
PostgreSQL
Redis
Redis
GitHub
GitHub
Amazon S3
Amazon S3

We use MongoDB as our primary #datastore. Mongo's approach to replica sets enables some fantastic patterns for operations like maintenance, backups, and #ETL.

As we pull #microservices from our #monolith, we are taking the opportunity to build them with their own datastores using PostgreSQL. We also use Redis to cache data we’d never store permanently, and to rate-limit our requests to partners’ APIs (like GitHub).

When we’re dealing with large blobs of immutable data (logs, artifacts, and test results), we store them in Amazon S3. We handle any side-effects of S3’s eventual consistency model within our own code. This ensures that we deal with user requests correctly while writes are in process.

See more
MongoDB logo

MongoDB

16.9K
13.4K
3.8K
16.9K
13.4K
+ 1
3.8K
The database for giant ideas
MongoDB logo
MongoDB
VS
Chronix logo
Chronix

related MongoDB posts

Jeyabalaji Subramanian
Jeyabalaji Subramanian
CTO at FundsCorner · | 24 upvotes · 340K views
atFundsCornerFundsCorner
MongoDB
MongoDB
PostgreSQL
PostgreSQL
MongoDB Stitch
MongoDB Stitch
Node.js
Node.js
Amazon SQS
Amazon SQS
Python
Python
SQLAlchemy
SQLAlchemy
AWS Lambda
AWS Lambda
Zappa
Zappa

Recently we were looking at a few robust and cost-effective ways of replicating the data that resides in our production MongoDB to a PostgreSQL database for data warehousing and business intelligence.

We set ourselves the following criteria for the optimal tool that would do this job: - The data replication must be near real-time, yet it should NOT impact the production database - The data replication must be horizontally scalable (based on the load), asynchronous & crash-resilient

Based on the above criteria, we selected the following tools to perform the end to end data replication:

We chose MongoDB Stitch for picking up the changes in the source database. It is the serverless platform from MongoDB. One of the services offered by MongoDB Stitch is Stitch Triggers. Using stitch triggers, you can execute a serverless function (in Node.js) in real time in response to changes in the database. When there are a lot of database changes, Stitch automatically "feeds forward" these changes through an asynchronous queue.

We chose Amazon SQS as the pipe / message backbone for communicating the changes from MongoDB to our own replication service. Interestingly enough, MongoDB stitch offers integration with AWS services.

In the Node.js function, we wrote minimal functionality to communicate the database changes (insert / update / delete / replace) to Amazon SQS.

Next we wrote a minimal micro-service in Python to listen to the message events on SQS, pickup the data payload & mirror the DB changes on to the target Data warehouse. We implemented source data to target data translation by modelling target table structures through SQLAlchemy . We deployed this micro-service as AWS Lambda with Zappa. With Zappa, deploying your services as event-driven & horizontally scalable Lambda service is dumb-easy.

In the end, we got to implement a highly scalable near realtime Change Data Replication service that "works" and deployed to production in a matter of few days!

See more
Robert Zuber
Robert Zuber
CTO at CircleCI · | 22 upvotes · 211.8K views
atCircleCICircleCI
MongoDB
MongoDB
PostgreSQL
PostgreSQL
Redis
Redis
GitHub
GitHub
Amazon S3
Amazon S3

We use MongoDB as our primary #datastore. Mongo's approach to replica sets enables some fantastic patterns for operations like maintenance, backups, and #ETL.

As we pull #microservices from our #monolith, we are taking the opportunity to build them with their own datastores using PostgreSQL. We also use Redis to cache data we’d never store permanently, and to rate-limit our requests to partners’ APIs (like GitHub).

When we’re dealing with large blobs of immutable data (logs, artifacts, and test results), we store them in Amazon S3. We handle any side-effects of S3’s eventual consistency model within our own code. This ensures that we deal with user requests correctly while writes are in process.

See more

related Microsoft SQL Server posts

AWS Elastic Beanstalk
AWS Elastic Beanstalk
Heroku
Heroku
Ruby
Ruby
Rails
Rails
Amazon RDS for PostgreSQL
Amazon RDS for PostgreSQL
MariaDB
MariaDB
Microsoft SQL Server
Microsoft SQL Server
Amazon RDS
Amazon RDS
AWS Lambda
AWS Lambda
Python
Python
Redis
Redis
Memcached
Memcached
AWS Elastic Load Balancing (ELB)
AWS Elastic Load Balancing (ELB)
Amazon Elasticsearch Service
Amazon Elasticsearch Service
Amazon ElastiCache
Amazon ElastiCache

We initially started out with Heroku as our PaaS provider due to a desire to use it by our original developer for our Ruby on Rails application/website at the time. We were finding response times slow, it was painfully slow, sometimes taking 10 seconds to start loading the main page. Moving up to the next "compute" level was going to be very expensive.

We moved our site over to AWS Elastic Beanstalk , not only did response times on the site practically become instant, our cloud bill for the application was cut in half.

In database world we are currently using Amazon RDS for PostgreSQL also, we have both MariaDB and Microsoft SQL Server both hosted on Amazon RDS. The plan is to migrate to AWS Aurora Serverless for all 3 of those database systems.

Additional services we use for our public applications: AWS Lambda, Python, Redis, Memcached, AWS Elastic Load Balancing (ELB), Amazon Elasticsearch Service, Amazon ElastiCache

See more

related MariaDB posts

AWS Elastic Beanstalk
AWS Elastic Beanstalk
Heroku
Heroku
Ruby
Ruby
Rails
Rails
Amazon RDS for PostgreSQL
Amazon RDS for PostgreSQL
MariaDB
MariaDB
Microsoft SQL Server
Microsoft SQL Server
Amazon RDS
Amazon RDS
AWS Lambda
AWS Lambda
Python
Python
Redis
Redis
Memcached
Memcached
AWS Elastic Load Balancing (ELB)
AWS Elastic Load Balancing (ELB)
Amazon Elasticsearch Service
Amazon Elasticsearch Service
Amazon ElastiCache
Amazon ElastiCache

We initially started out with Heroku as our PaaS provider due to a desire to use it by our original developer for our Ruby on Rails application/website at the time. We were finding response times slow, it was painfully slow, sometimes taking 10 seconds to start loading the main page. Moving up to the next "compute" level was going to be very expensive.

We moved our site over to AWS Elastic Beanstalk , not only did response times on the site practically become instant, our cloud bill for the application was cut in half.

In database world we are currently using Amazon RDS for PostgreSQL also, we have both MariaDB and Microsoft SQL Server both hosted on Amazon RDS. The plan is to migrate to AWS Aurora Serverless for all 3 of those database systems.

Additional services we use for our public applications: AWS Lambda, Python, Redis, Memcached, AWS Elastic Load Balancing (ELB), Amazon Elasticsearch Service, Amazon ElastiCache

See more
Joshua Dean Küpper
Joshua Dean Küpper
CEO at Scrayos UG (haftungsbeschränkt) · | 5 upvotes · 47.2K views
atScrayos UG (haftungsbeschränkt)Scrayos UG (haftungsbeschränkt)
MariaDB
MariaDB
PostgreSQL
PostgreSQL
GitLab
GitLab
Sentry
Sentry

We primarily use MariaDB but use PostgreSQL as a part of GitLab , Sentry and @Nextcloud , which (initially) forced us to use it anyways. While this isn't much of a decision – because we didn't have one (ha ha) – we learned to love the perks and advantages of PostgreSQL anyways. PostgreSQLs extension system makes it even more flexible than a lot of the other SQL-based DBs (that only offer stored procedures) and the additional JOIN options, the enhanced role management and the different authentication options came in really handy, when doing manual maintenance on the databases.

See more
SQLite logo

SQLite

3.4K
2.7K
505
3.4K
2.7K
+ 1
505
A software library that implements a self-contained, serverless, zero-configuration, transactional SQL database engine
SQLite logo
SQLite
VS
Chronix logo
Chronix

related SQLite posts

Daniel Quinn
Daniel Quinn
Senior Developer at Workfinder · | 2 upvotes · 30.8K views
atThe Paperless ProjectThe Paperless Project
SQLite
SQLite
PostgreSQL
PostgreSQL

SQLite is a tricky beast. It's great if you're working single-threaded, but a Terrible Idea if you've got more than one concurrent connection. You use it because it's easy to setup, light, and portable (it's just a file).

In Paperless, we've built a self-hosted web application, so it makes sense to standardise on something small & light, and as we don't have to worry about multiple connections (it's just you using the app), it's a perfect fit.

For users wanting to scale Paperless up to a multi-user environment though, we do provide the hooks to switch to PostgreSQL .

See more
SQLite
SQLite
PostgreSQL
PostgreSQL

SQLite for development, PostgreSQL SQL for production databases.

See more
Memcached logo

Memcached

2.7K
1.7K
452
2.7K
1.7K
+ 1
452
High-performance, distributed memory object caching system
Memcached logo
Memcached
VS
Chronix logo
Chronix

related Memcached posts

Julien DeFrance
Julien DeFrance
Principal Software Engineer at Tophatter · | 16 upvotes · 477.2K views
atSmartZipSmartZip
Rails
Rails
Rails API
Rails API
AWS Elastic Beanstalk
AWS Elastic Beanstalk
Capistrano
Capistrano
Docker
Docker
Amazon S3
Amazon S3
Amazon RDS
Amazon RDS
MySQL
MySQL
Amazon RDS for Aurora
Amazon RDS for Aurora
Amazon ElastiCache
Amazon ElastiCache
Memcached
Memcached
Amazon CloudFront
Amazon CloudFront
Segment
Segment
Zapier
Zapier
Amazon Redshift
Amazon Redshift
Amazon Quicksight
Amazon Quicksight
Superset
Superset
Elasticsearch
Elasticsearch
Amazon Elasticsearch Service
Amazon Elasticsearch Service
New Relic
New Relic
AWS Lambda