Alternatives to Debezium logo

Alternatives to Debezium

Kafka, Logstash, MySQL, PostgreSQL, and MongoDB are the most popular alternatives and competitors to Debezium.
115
117
+ 1
0

What is Debezium and what are its top alternatives?

Debezium is an open-source distributed platform that captures row-level changes in databases so they can be easily integrated with other systems. Debezium supports a variety of databases including MySQL, PostgreSQL, MongoDB, and more, and integrates with popular stream processing frameworks like Apache Kafka. It provides a reliable and scalable way to stream database changes in real-time, helping users build event-driven architectures. However, Debezium has limitations such as complexity in setting up and maintaining, lack of support for certain databases, and occasional performance issues.

  1. Debezium.io: Debezium is a powerful open-source tool for capturing and exporting database changes in real-time. It supports a wide range of databases and integrates seamlessly with Apache Kafka for data streaming. Pros include its robustness and scalability, but cons include complexity in setup and occasional performance issues.
  2. Debezium GitHub: Debezium's GitHub repository contains all the source code and documentation for the project. It offers transparency and a collaborative environment for developers to contribute to the project and stay up to date on the latest features and fixes.
  3. Maxwell: Maxwell is a lightweight tool for capturing MySQL schema changes and MySQL row changes. It is easy to set up and use, but may lack some of the advanced features of Debezium.
  4. DebeziumDB: DebeziumDB is an extension of Debezium that adds support for additional databases and features. It provides more flexibility and functionality compared to the base Debezium tool.
  5. GoldenGate: Oracle GoldenGate is a comprehensive data integration platform that includes real-time change data capture capabilities. It offers robust features and performance but may come with a higher price tag compared to Debezium.
  6. BottledWater: BottledWater is a tool for streaming PostgreSQL data into Kafka. It provides a simple and efficient way to capture database changes in real-time, similar to Debezium but focused specifically on PostgreSQL.
  7. Debezium Alternator: Debezium Alternator is an enhancement for Debezium that offers additional features and functionality for capturing database changes. It adds more customization options and flexibility for users.
  8. Attunity Replicate: Attunity Replicate is a data replication and integration tool that supports real-time change data capture. It offers a user-friendly interface and robust capabilities, but may not be as open-source or customizable as Debezium.
  9. Confluent Replicator: Confluent Replicator is a Kafka-based tool for replicating data across Kafka clusters. It provides reliable and scalable data replication capabilities but may require additional setup and configuration compared to Debezium.
  10. Tungsten Replicator: Tungsten Replicator is an open-source data replication and data integration tool. It supports real-time change data capture and provides robust features for data streaming, but may have a steeper learning curve compared to Debezium.

Top Alternatives to Debezium

  • Kafka
    Kafka

    Kafka is a distributed, partitioned, replicated commit log service. It provides the functionality of a messaging system, but with a unique design. ...

  • Logstash
    Logstash

    Logstash is a tool for managing events and logs. You can use it to collect logs, parse them, and store them for later use (like, for searching). If you store them in Elasticsearch, you can view and analyze them with Kibana. ...

  • MySQL
    MySQL

    The MySQL software delivers a very fast, multi-threaded, multi-user, and robust SQL (Structured Query Language) database server. MySQL Server is intended for mission-critical, heavy-load production systems as well as for embedding into mass-deployed software. ...

  • PostgreSQL
    PostgreSQL

    PostgreSQL is an advanced object-relational database management system that supports an extended subset of the SQL standard, including transactions, foreign keys, subqueries, triggers, user-defined types and functions. ...

  • MongoDB
    MongoDB

    MongoDB stores data in JSON-like documents that can vary in structure, offering a dynamic, flexible schema. MongoDB was also designed for high availability and scalability, with built-in replication and auto-sharding. ...

  • Redis
    Redis

    Redis is an open source (BSD licensed), in-memory data structure store, used as a database, cache, and message broker. Redis provides data structures such as strings, hashes, lists, sets, sorted sets with range queries, bitmaps, hyperloglogs, geospatial indexes, and streams. ...

  • Amazon S3
    Amazon S3

    Amazon Simple Storage Service provides a fully redundant data storage infrastructure for storing and retrieving any amount of data, at any time, from anywhere on the web ...

  • GitHub Actions
    GitHub Actions

    It makes it easy to automate all your software workflows, now with world-class CI/CD. Build, test, and deploy your code right from GitHub. Make code reviews, branch management, and issue triaging work the way you want. ...

Debezium alternatives & related posts

Kafka logo

Kafka

23.6K
607
Distributed, fault tolerant, high throughput pub-sub messaging system
23.6K
607
PROS OF KAFKA
  • 126
    High-throughput
  • 119
    Distributed
  • 92
    Scalable
  • 86
    High-Performance
  • 66
    Durable
  • 38
    Publish-Subscribe
  • 19
    Simple-to-use
  • 18
    Open source
  • 12
    Written in Scala and java. Runs on JVM
  • 9
    Message broker + Streaming system
  • 4
    KSQL
  • 4
    Avro schema integration
  • 4
    Robust
  • 3
    Suport Multiple clients
  • 2
    Extremely good parallelism constructs
  • 2
    Partioned, replayable log
  • 1
    Simple publisher / multi-subscriber model
  • 1
    Fun
  • 1
    Flexible
CONS OF KAFKA
  • 32
    Non-Java clients are second-class citizens
  • 29
    Needs Zookeeper
  • 9
    Operational difficulties
  • 5
    Terrible Packaging

related Kafka posts

Nick Rockwell
SVP, Engineering at Fastly · | 46 upvotes · 4.1M views

When I joined NYT there was already broad dissatisfaction with the LAMP (Linux Apache HTTP Server MySQL PHP) Stack and the front end framework, in particular. So, I wasn't passing judgment on it. I mean, LAMP's fine, you can do good work in LAMP. It's a little dated at this point, but it's not ... I didn't want to rip it out for its own sake, but everyone else was like, "We don't like this, it's really inflexible." And I remember from being outside the company when that was called MIT FIVE when it had launched. And been observing it from the outside, and I was like, you guys took so long to do that and you did it so carefully, and yet you're not happy with your decisions. Why is that? That was more the impetus. If we're going to do this again, how are we going to do it in a way that we're gonna get a better result?

So we're moving quickly away from LAMP, I would say. So, right now, the new front end is React based and using Apollo. And we've been in a long, protracted, gradual rollout of the core experiences.

React is now talking to GraphQL as a primary API. There's a Node.js back end, to the front end, which is mainly for server-side rendering, as well.

Behind there, the main repository for the GraphQL server is a big table repository, that we call Bodega because it's a convenience store. And that reads off of a Kafka pipeline.

See more
Ashish Singh
Tech Lead, Big Data Platform at Pinterest · | 38 upvotes · 3.3M views

To provide employees with the critical need of interactive querying, we’ve worked with Presto, an open-source distributed SQL query engine, over the years. Operating Presto at Pinterest’s scale has involved resolving quite a few challenges like, supporting deeply nested and huge thrift schemas, slow/ bad worker detection and remediation, auto-scaling cluster, graceful cluster shutdown and impersonation support for ldap authenticator.

Our infrastructure is built on top of Amazon EC2 and we leverage Amazon S3 for storing our data. This separates compute and storage layers, and allows multiple compute clusters to share the S3 data.

We have hundreds of petabytes of data and tens of thousands of Apache Hive tables. Our Presto clusters are comprised of a fleet of 450 r4.8xl EC2 instances. Presto clusters together have over 100 TBs of memory and 14K vcpu cores. Within Pinterest, we have close to more than 1,000 monthly active users (out of total 1,600+ Pinterest employees) using Presto, who run about 400K queries on these clusters per month.

Each query submitted to Presto cluster is logged to a Kafka topic via Singer. Singer is a logging agent built at Pinterest and we talked about it in a previous post. Each query is logged when it is submitted and when it finishes. When a Presto cluster crashes, we will have query submitted events without corresponding query finished events. These events enable us to capture the effect of cluster crashes over time.

Each Presto cluster at Pinterest has workers on a mix of dedicated AWS EC2 instances and Kubernetes pods. Kubernetes platform provides us with the capability to add and remove workers from a Presto cluster very quickly. The best-case latency on bringing up a new worker on Kubernetes is less than a minute. However, when the Kubernetes cluster itself is out of resources and needs to scale up, it can take up to ten minutes. Some other advantages of deploying on Kubernetes platform is that our Presto deployment becomes agnostic of cloud vendor, instance types, OS, etc.

#BigData #AWS #DataScience #DataEngineering

See more
Logstash logo

Logstash

11.4K
103
Collect, Parse, & Enrich Data
11.4K
103
PROS OF LOGSTASH
  • 69
    Free
  • 18
    Easy but powerful filtering
  • 12
    Scalable
  • 2
    Kibana provides machine learning based analytics to log
  • 1
    Great to meet GDPR goals
  • 1
    Well Documented
CONS OF LOGSTASH
  • 4
    Memory-intensive
  • 1
    Documentation difficult to use

related Logstash posts

Tymoteusz Paul
Devops guy at X20X Development LTD · | 23 upvotes · 10M views

Often enough I have to explain my way of going about setting up a CI/CD pipeline with multiple deployment platforms. Since I am a bit tired of yapping the same every single time, I've decided to write it up and share with the world this way, and send people to read it instead ;). I will explain it on "live-example" of how the Rome got built, basing that current methodology exists only of readme.md and wishes of good luck (as it usually is ;)).

It always starts with an app, whatever it may be and reading the readmes available while Vagrant and VirtualBox is installing and updating. Following that is the first hurdle to go over - convert all the instruction/scripts into Ansible playbook(s), and only stopping when doing a clear vagrant up or vagrant reload we will have a fully working environment. As our Vagrant environment is now functional, it's time to break it! This is the moment to look for how things can be done better (too rigid/too lose versioning? Sloppy environment setup?) and replace them with the right way to do stuff, one that won't bite us in the backside. This is the point, and the best opportunity, to upcycle the existing way of doing dev environment to produce a proper, production-grade product.

I should probably digress here for a moment and explain why. I firmly believe that the way you deploy production is the same way you should deploy develop, shy of few debugging-friendly setting. This way you avoid the discrepancy between how production work vs how development works, which almost always causes major pains in the back of the neck, and with use of proper tools should mean no more work for the developers. That's why we start with Vagrant as developer boxes should be as easy as vagrant up, but the meat of our product lies in Ansible which will do meat of the work and can be applied to almost anything: AWS, bare metal, docker, LXC, in open net, behind vpn - you name it.

We must also give proper consideration to monitoring and logging hoovering at this point. My generic answer here is to grab Elasticsearch, Kibana, and Logstash. While for different use cases there may be better solutions, this one is well battle-tested, performs reasonably and is very easy to scale both vertically (within some limits) and horizontally. Logstash rules are easy to write and are well supported in maintenance through Ansible, which as I've mentioned earlier, are at the very core of things, and creating triggers/reports and alerts based on Elastic and Kibana is generally a breeze, including some quite complex aggregations.

If we are happy with the state of the Ansible it's time to move on and put all those roles and playbooks to work. Namely, we need something to manage our CI/CD pipelines. For me, the choice is obvious: TeamCity. It's modern, robust and unlike most of the light-weight alternatives, it's transparent. What I mean by that is that it doesn't tell you how to do things, doesn't limit your ways to deploy, or test, or package for that matter. Instead, it provides a developer-friendly and rich playground for your pipelines. You can do most the same with Jenkins, but it has a quite dated look and feel to it, while also missing some key functionality that must be brought in via plugins (like quality REST API which comes built-in with TeamCity). It also comes with all the common-handy plugins like Slack or Apache Maven integration.

The exact flow between CI and CD varies too greatly from one application to another to describe, so I will outline a few rules that guide me in it: 1. Make build steps as small as possible. This way when something breaks, we know exactly where, without needing to dig and root around. 2. All security credentials besides development environment must be sources from individual Vault instances. Keys to those containers should exist only on the CI/CD box and accessible by a few people (the less the better). This is pretty self-explanatory, as anything besides dev may contain sensitive data and, at times, be public-facing. Because of that appropriate security must be present. TeamCity shines in this department with excellent secrets-management. 3. Every part of the build chain shall consume and produce artifacts. If it creates nothing, it likely shouldn't be its own build. This way if any issue shows up with any environment or version, all developer has to do it is grab appropriate artifacts to reproduce the issue locally. 4. Deployment builds should be directly tied to specific Git branches/tags. This enables much easier tracking of what caused an issue, including automated identifying and tagging the author (nothing like automated regression testing!).

Speaking of deployments, I generally try to keep it simple but also with a close eye on the wallet. Because of that, I am more than happy with AWS or another cloud provider, but also constantly peeking at the loads and do we get the value of what we are paying for. Often enough the pattern of use is not constantly erratic, but rather has a firm baseline which could be migrated away from the cloud and into bare metal boxes. That is another part where this approach strongly triumphs over the common Docker and CircleCI setup, where you are very much tied in to use cloud providers and getting out is expensive. Here to embrace bare-metal hosting all you need is a help of some container-based self-hosting software, my personal preference is with Proxmox and LXC. Following that all you must write are ansible scripts to manage hardware of Proxmox, similar way as you do for Amazon EC2 (ansible supports both greatly) and you are good to go. One does not exclude another, quite the opposite, as they can live in great synergy and cut your costs dramatically (the heavier your base load, the bigger the savings) while providing production-grade resiliency.

See more

Hi everyone. I'm trying to create my personal syslog monitoring.

  1. To get the logs, I have uncertainty to choose the way: 1.1 Use Logstash like a TCP server. 1.2 Implement a Go TCP server.

  2. To store and plot data. 2.1 Use Elasticsearch tools. 2.2 Use InfluxDB and Grafana.

I would like to know... Which is a cheaper and scalable solution?

Or even if there is a better way to do it.

See more
MySQL logo

MySQL

125.6K
3.8K
The world's most popular open source database
125.6K
3.8K
PROS OF MYSQL
  • 800
    Sql
  • 679
    Free
  • 562
    Easy
  • 528
    Widely used
  • 490
    Open source
  • 180
    High availability
  • 160
    Cross-platform support
  • 104
    Great community
  • 79
    Secure
  • 75
    Full-text indexing and searching
  • 26
    Fast, open, available
  • 16
    Reliable
  • 16
    SSL support
  • 15
    Robust
  • 9
    Enterprise Version
  • 7
    Easy to set up on all platforms
  • 3
    NoSQL access to JSON data type
  • 1
    Relational database
  • 1
    Easy, light, scalable
  • 1
    Sequel Pro (best SQL GUI)
  • 1
    Replica Support
CONS OF MYSQL
  • 16
    Owned by a company with their own agenda
  • 3
    Can't roll back schema changes

related MySQL posts

Nick Rockwell
SVP, Engineering at Fastly · | 46 upvotes · 4.1M views

When I joined NYT there was already broad dissatisfaction with the LAMP (Linux Apache HTTP Server MySQL PHP) Stack and the front end framework, in particular. So, I wasn't passing judgment on it. I mean, LAMP's fine, you can do good work in LAMP. It's a little dated at this point, but it's not ... I didn't want to rip it out for its own sake, but everyone else was like, "We don't like this, it's really inflexible." And I remember from being outside the company when that was called MIT FIVE when it had launched. And been observing it from the outside, and I was like, you guys took so long to do that and you did it so carefully, and yet you're not happy with your decisions. Why is that? That was more the impetus. If we're going to do this again, how are we going to do it in a way that we're gonna get a better result?

So we're moving quickly away from LAMP, I would say. So, right now, the new front end is React based and using Apollo. And we've been in a long, protracted, gradual rollout of the core experiences.

React is now talking to GraphQL as a primary API. There's a Node.js back end, to the front end, which is mainly for server-side rendering, as well.

Behind there, the main repository for the GraphQL server is a big table repository, that we call Bodega because it's a convenience store. And that reads off of a Kafka pipeline.

See more
Tim Abbott

We've been using PostgreSQL since the very early days of Zulip, but we actually didn't use it from the beginning. Zulip started out as a MySQL project back in 2012, because we'd heard it was a good choice for a startup with a wide community. However, we found that even though we were using the Django ORM for most of our database access, we spent a lot of time fighting with MySQL. Issues ranged from bad collation defaults, to bad query plans which required a lot of manual query tweaks.

We ended up getting so frustrated that we tried out PostgresQL, and the results were fantastic. We didn't have to do any real customization (just some tuning settings for how big a server we had), and all of our most important queries were faster out of the box. As a result, we were able to delete a bunch of custom queries escaping the ORM that we'd written to make the MySQL query planner happy (because postgres just did the right thing automatically).

And then after that, we've just gotten a ton of value out of postgres. We use its excellent built-in full-text search, which has helped us avoid needing to bring in a tool like Elasticsearch, and we've really enjoyed features like its partial indexes, which saved us a lot of work adding unnecessary extra tables to get good performance for things like our "unread messages" and "starred messages" indexes.

I can't recommend it highly enough.

See more
PostgreSQL logo

PostgreSQL

98.4K
3.5K
A powerful, open source object-relational database system
98.4K
3.5K
PROS OF POSTGRESQL
  • 764
    Relational database
  • 510
    High availability
  • 439
    Enterprise class database
  • 383
    Sql
  • 304
    Sql + nosql
  • 173
    Great community
  • 147
    Easy to setup
  • 131
    Heroku
  • 130
    Secure by default
  • 113
    Postgis
  • 50
    Supports Key-Value
  • 48
    Great JSON support
  • 34
    Cross platform
  • 33
    Extensible
  • 28
    Replication
  • 26
    Triggers
  • 23
    Multiversion concurrency control
  • 23
    Rollback
  • 21
    Open source
  • 18
    Heroku Add-on
  • 17
    Stable, Simple and Good Performance
  • 15
    Powerful
  • 13
    Lets be serious, what other SQL DB would you go for?
  • 11
    Good documentation
  • 9
    Scalable
  • 8
    Free
  • 8
    Reliable
  • 8
    Intelligent optimizer
  • 7
    Transactional DDL
  • 7
    Modern
  • 6
    One stop solution for all things sql no matter the os
  • 5
    Relational database with MVCC
  • 5
    Faster Development
  • 4
    Full-Text Search
  • 4
    Developer friendly
  • 3
    Excellent source code
  • 3
    Free version
  • 3
    Great DB for Transactional system or Application
  • 3
    Relational datanbase
  • 3
    search
  • 3
    Open-source
  • 2
    Text
  • 2
    Full-text
  • 1
    Can handle up to petabytes worth of size
  • 1
    Composability
  • 1
    Multiple procedural languages supported
  • 0
    Native
CONS OF POSTGRESQL
  • 10
    Table/index bloatings

related PostgreSQL posts

Simon Reymann
Senior Fullstack Developer at QUANTUSflow Software GmbH · | 30 upvotes · 11.6M views

Our whole DevOps stack consists of the following tools:

  • GitHub (incl. GitHub Pages/Markdown for Documentation, GettingStarted and HowTo's) for collaborative review and code management tool
  • Respectively Git as revision control system
  • SourceTree as Git GUI
  • Visual Studio Code as IDE
  • CircleCI for continuous integration (automatize development process)
  • Prettier / TSLint / ESLint as code linter
  • SonarQube as quality gate
  • Docker as container management (incl. Docker Compose for multi-container application management)
  • VirtualBox for operating system simulation tests
  • Kubernetes as cluster management for docker containers
  • Heroku for deploying in test environments
  • nginx as web server (preferably used as facade server in production environment)
  • SSLMate (using OpenSSL) for certificate management
  • Amazon EC2 (incl. Amazon S3) for deploying in stage (production-like) and production environments
  • PostgreSQL as preferred database system
  • Redis as preferred in-memory database/store (great for caching)

The main reason we have chosen Kubernetes over Docker Swarm is related to the following artifacts:

  • Key features: Easy and flexible installation, Clear dashboard, Great scaling operations, Monitoring is an integral part, Great load balancing concepts, Monitors the condition and ensures compensation in the event of failure.
  • Applications: An application can be deployed using a combination of pods, deployments, and services (or micro-services).
  • Functionality: Kubernetes as a complex installation and setup process, but it not as limited as Docker Swarm.
  • Monitoring: It supports multiple versions of logging and monitoring when the services are deployed within the cluster (Elasticsearch/Kibana (ELK), Heapster/Grafana, Sysdig cloud integration).
  • Scalability: All-in-one framework for distributed systems.
  • Other Benefits: Kubernetes is backed by the Cloud Native Computing Foundation (CNCF), huge community among container orchestration tools, it is an open source and modular tool that works with any OS.
See more
Jeyabalaji Subramanian

Recently we were looking at a few robust and cost-effective ways of replicating the data that resides in our production MongoDB to a PostgreSQL database for data warehousing and business intelligence.

We set ourselves the following criteria for the optimal tool that would do this job: - The data replication must be near real-time, yet it should NOT impact the production database - The data replication must be horizontally scalable (based on the load), asynchronous & crash-resilient

Based on the above criteria, we selected the following tools to perform the end to end data replication:

We chose MongoDB Stitch for picking up the changes in the source database. It is the serverless platform from MongoDB. One of the services offered by MongoDB Stitch is Stitch Triggers. Using stitch triggers, you can execute a serverless function (in Node.js) in real time in response to changes in the database. When there are a lot of database changes, Stitch automatically "feeds forward" these changes through an asynchronous queue.

We chose Amazon SQS as the pipe / message backbone for communicating the changes from MongoDB to our own replication service. Interestingly enough, MongoDB stitch offers integration with AWS services.

In the Node.js function, we wrote minimal functionality to communicate the database changes (insert / update / delete / replace) to Amazon SQS.

Next we wrote a minimal micro-service in Python to listen to the message events on SQS, pickup the data payload & mirror the DB changes on to the target Data warehouse. We implemented source data to target data translation by modelling target table structures through SQLAlchemy . We deployed this micro-service as AWS Lambda with Zappa. With Zappa, deploying your services as event-driven & horizontally scalable Lambda service is dumb-easy.

In the end, we got to implement a highly scalable near realtime Change Data Replication service that "works" and deployed to production in a matter of few days!

See more
MongoDB logo

MongoDB

93.7K
4.1K
The database for giant ideas
93.7K
4.1K
PROS OF MONGODB
  • 828
    Document-oriented storage
  • 593
    No sql
  • 553
    Ease of use
  • 464
    Fast
  • 410
    High performance
  • 255
    Free
  • 218
    Open source
  • 180
    Flexible
  • 145
    Replication & high availability
  • 112
    Easy to maintain
  • 42
    Querying
  • 39
    Easy scalability
  • 38
    Auto-sharding
  • 37
    High availability
  • 31
    Map/reduce
  • 27
    Document database
  • 25
    Easy setup
  • 25
    Full index support
  • 16
    Reliable
  • 15
    Fast in-place updates
  • 14
    Agile programming, flexible, fast
  • 12
    No database migrations
  • 8
    Easy integration with Node.Js
  • 8
    Enterprise
  • 6
    Enterprise Support
  • 5
    Great NoSQL DB
  • 4
    Support for many languages through different drivers
  • 3
    Schemaless
  • 3
    Aggregation Framework
  • 3
    Drivers support is good
  • 2
    Fast
  • 2
    Managed service
  • 2
    Easy to Scale
  • 2
    Awesome
  • 2
    Consistent
  • 1
    Good GUI
  • 1
    Acid Compliant
CONS OF MONGODB
  • 6
    Very slowly for connected models that require joins
  • 3
    Not acid compliant
  • 2
    Proprietary query language

related MongoDB posts

Jeyabalaji Subramanian

Recently we were looking at a few robust and cost-effective ways of replicating the data that resides in our production MongoDB to a PostgreSQL database for data warehousing and business intelligence.

We set ourselves the following criteria for the optimal tool that would do this job: - The data replication must be near real-time, yet it should NOT impact the production database - The data replication must be horizontally scalable (based on the load), asynchronous & crash-resilient

Based on the above criteria, we selected the following tools to perform the end to end data replication:

We chose MongoDB Stitch for picking up the changes in the source database. It is the serverless platform from MongoDB. One of the services offered by MongoDB Stitch is Stitch Triggers. Using stitch triggers, you can execute a serverless function (in Node.js) in real time in response to changes in the database. When there are a lot of database changes, Stitch automatically "feeds forward" these changes through an asynchronous queue.

We chose Amazon SQS as the pipe / message backbone for communicating the changes from MongoDB to our own replication service. Interestingly enough, MongoDB stitch offers integration with AWS services.

In the Node.js function, we wrote minimal functionality to communicate the database changes (insert / update / delete / replace) to Amazon SQS.

Next we wrote a minimal micro-service in Python to listen to the message events on SQS, pickup the data payload & mirror the DB changes on to the target Data warehouse. We implemented source data to target data translation by modelling target table structures through SQLAlchemy . We deployed this micro-service as AWS Lambda with Zappa. With Zappa, deploying your services as event-driven & horizontally scalable Lambda service is dumb-easy.

In the end, we got to implement a highly scalable near realtime Change Data Replication service that "works" and deployed to production in a matter of few days!

See more
Robert Zuber

We use MongoDB as our primary #datastore. Mongo's approach to replica sets enables some fantastic patterns for operations like maintenance, backups, and #ETL.

As we pull #microservices from our #monolith, we are taking the opportunity to build them with their own datastores using PostgreSQL. We also use Redis to cache data we’d never store permanently, and to rate-limit our requests to partners’ APIs (like GitHub).

When we’re dealing with large blobs of immutable data (logs, artifacts, and test results), we store them in Amazon S3. We handle any side-effects of S3’s eventual consistency model within our own code. This ensures that we deal with user requests correctly while writes are in process.

See more
Redis logo

Redis

59.5K
3.9K
Open source (BSD licensed), in-memory data structure store
59.5K
3.9K
PROS OF REDIS
  • 886
    Performance
  • 542
    Super fast
  • 513
    Ease of use
  • 444
    In-memory cache
  • 324
    Advanced key-value cache
  • 194
    Open source
  • 182
    Easy to deploy
  • 164
    Stable
  • 155
    Free
  • 121
    Fast
  • 42
    High-Performance
  • 40
    High Availability
  • 35
    Data Structures
  • 32
    Very Scalable
  • 24
    Replication
  • 22
    Great community
  • 22
    Pub/Sub
  • 19
    "NoSQL" key-value data store
  • 16
    Hashes
  • 13
    Sets
  • 11
    Sorted Sets
  • 10
    NoSQL
  • 10
    Lists
  • 9
    Async replication
  • 9
    BSD licensed
  • 8
    Bitmaps
  • 8
    Integrates super easy with Sidekiq for Rails background
  • 7
    Keys with a limited time-to-live
  • 7
    Open Source
  • 6
    Lua scripting
  • 6
    Strings
  • 5
    Awesomeness for Free
  • 5
    Hyperloglogs
  • 4
    Transactions
  • 4
    Outstanding performance
  • 4
    Runs server side LUA
  • 4
    LRU eviction of keys
  • 4
    Feature Rich
  • 4
    Written in ANSI C
  • 4
    Networked
  • 3
    Data structure server
  • 3
    Performance & ease of use
  • 2
    Dont save data if no subscribers are found
  • 2
    Automatic failover
  • 2
    Easy to use
  • 2
    Temporarily kept on disk
  • 2
    Scalable
  • 2
    Existing Laravel Integration
  • 2
    Channels concept
  • 2
    Object [key/value] size each 500 MB
  • 2
    Simple
CONS OF REDIS
  • 15
    Cannot query objects directly
  • 3
    No secondary indexes for non-numeric data types
  • 1
    No WAL

related Redis posts

Russel Werner
Lead Engineer at StackShare · | 32 upvotes · 2.8M views

StackShare Feed is built entirely with React, Glamorous, and Apollo. One of our objectives with the public launch of the Feed was to enable a Server-side rendered (SSR) experience for our organic search traffic. When you visit the StackShare Feed, and you aren't logged in, you are delivered the Trending feed experience. We use an in-house Node.js rendering microservice to generate this HTML. This microservice needs to run and serve requests independent of our Rails web app. Up until recently, we had a mono-repo with our Rails and React code living happily together and all served from the same web process. In order to deploy our SSR app into a Heroku environment, we needed to split out our front-end application into a separate repo in GitHub. The driving factor in this decision was mostly due to limitations imposed by Heroku specifically with how processes can't communicate with each other. A new SSR app was created in Heroku and linked directly to the frontend repo so it stays in-sync with changes.

Related to this, we need a way to "deploy" our frontend changes to various server environments without building & releasing the entire Ruby application. We built a hybrid Amazon S3 Amazon CloudFront solution to host our Webpack bundles. A new CircleCI script builds the bundles and uploads them to S3. The final step in our rollout is to update some keys in Redis so our Rails app knows which bundles to serve. The result of these efforts were significant. Our frontend team now moves independently of our backend team, our build & release process takes only a few minutes, we are now using an edge CDN to serve JS assets, and we have pre-rendered React pages!

#StackDecisionsLaunch #SSR #Microservices #FrontEndRepoSplit

See more
Simon Reymann
Senior Fullstack Developer at QUANTUSflow Software GmbH · | 30 upvotes · 11.6M views

Our whole DevOps stack consists of the following tools:

  • GitHub (incl. GitHub Pages/Markdown for Documentation, GettingStarted and HowTo's) for collaborative review and code management tool
  • Respectively Git as revision control system
  • SourceTree as Git GUI
  • Visual Studio Code as IDE
  • CircleCI for continuous integration (automatize development process)
  • Prettier / TSLint / ESLint as code linter
  • SonarQube as quality gate
  • Docker as container management (incl. Docker Compose for multi-container application management)
  • VirtualBox for operating system simulation tests
  • Kubernetes as cluster management for docker containers
  • Heroku for deploying in test environments
  • nginx as web server (preferably used as facade server in production environment)
  • SSLMate (using OpenSSL) for certificate management
  • Amazon EC2 (incl. Amazon S3) for deploying in stage (production-like) and production environments
  • PostgreSQL as preferred database system
  • Redis as preferred in-memory database/store (great for caching)

The main reason we have chosen Kubernetes over Docker Swarm is related to the following artifacts:

  • Key features: Easy and flexible installation, Clear dashboard, Great scaling operations, Monitoring is an integral part, Great load balancing concepts, Monitors the condition and ensures compensation in the event of failure.
  • Applications: An application can be deployed using a combination of pods, deployments, and services (or micro-services).
  • Functionality: Kubernetes as a complex installation and setup process, but it not as limited as Docker Swarm.
  • Monitoring: It supports multiple versions of logging and monitoring when the services are deployed within the cluster (Elasticsearch/Kibana (ELK), Heapster/Grafana, Sysdig cloud integration).
  • Scalability: All-in-one framework for distributed systems.
  • Other Benefits: Kubernetes is backed by the Cloud Native Computing Foundation (CNCF), huge community among container orchestration tools, it is an open source and modular tool that works with any OS.
See more
Amazon S3 logo

Amazon S3

53.3K
2K
Store and retrieve any amount of data, at any time, from anywhere on the web
53.3K
2K
PROS OF AMAZON S3
  • 590
    Reliable
  • 492
    Scalable
  • 456
    Cheap
  • 329
    Simple & easy
  • 83
    Many sdks
  • 30
    Logical
  • 13
    Easy Setup
  • 11
    REST API
  • 11
    1000+ POPs
  • 6
    Secure
  • 4
    Easy
  • 4
    Plug and play
  • 3
    Web UI for uploading files
  • 2
    Faster on response
  • 2
    Flexible
  • 2
    GDPR ready
  • 1
    Easy to use
  • 1
    Plug-gable
  • 1
    Easy integration with CloudFront
CONS OF AMAZON S3
  • 7
    Permissions take some time to get right
  • 6
    Requires a credit card
  • 6
    Takes time/work to organize buckets & folders properly
  • 3
    Complex to set up

related Amazon S3 posts

Ashish Singh
Tech Lead, Big Data Platform at Pinterest · | 38 upvotes · 3.3M views

To provide employees with the critical need of interactive querying, we’ve worked with Presto, an open-source distributed SQL query engine, over the years. Operating Presto at Pinterest’s scale has involved resolving quite a few challenges like, supporting deeply nested and huge thrift schemas, slow/ bad worker detection and remediation, auto-scaling cluster, graceful cluster shutdown and impersonation support for ldap authenticator.

Our infrastructure is built on top of Amazon EC2 and we leverage Amazon S3 for storing our data. This separates compute and storage layers, and allows multiple compute clusters to share the S3 data.

We have hundreds of petabytes of data and tens of thousands of Apache Hive tables. Our Presto clusters are comprised of a fleet of 450 r4.8xl EC2 instances. Presto clusters together have over 100 TBs of memory and 14K vcpu cores. Within Pinterest, we have close to more than 1,000 monthly active users (out of total 1,600+ Pinterest employees) using Presto, who run about 400K queries on these clusters per month.

Each query submitted to Presto cluster is logged to a Kafka topic via Singer. Singer is a logging agent built at Pinterest and we talked about it in a previous post. Each query is logged when it is submitted and when it finishes. When a Presto cluster crashes, we will have query submitted events without corresponding query finished events. These events enable us to capture the effect of cluster crashes over time.

Each Presto cluster at Pinterest has workers on a mix of dedicated AWS EC2 instances and Kubernetes pods. Kubernetes platform provides us with the capability to add and remove workers from a Presto cluster very quickly. The best-case latency on bringing up a new worker on Kubernetes is less than a minute. However, when the Kubernetes cluster itself is out of resources and needs to scale up, it can take up to ten minutes. Some other advantages of deploying on Kubernetes platform is that our Presto deployment becomes agnostic of cloud vendor, instance types, OS, etc.

#BigData #AWS #DataScience #DataEngineering

See more
Russel Werner
Lead Engineer at StackShare · | 32 upvotes · 2.8M views

StackShare Feed is built entirely with React, Glamorous, and Apollo. One of our objectives with the public launch of the Feed was to enable a Server-side rendered (SSR) experience for our organic search traffic. When you visit the StackShare Feed, and you aren't logged in, you are delivered the Trending feed experience. We use an in-house Node.js rendering microservice to generate this HTML. This microservice needs to run and serve requests independent of our Rails web app. Up until recently, we had a mono-repo with our Rails and React code living happily together and all served from the same web process. In order to deploy our SSR app into a Heroku environment, we needed to split out our front-end application into a separate repo in GitHub. The driving factor in this decision was mostly due to limitations imposed by Heroku specifically with how processes can't communicate with each other. A new SSR app was created in Heroku and linked directly to the frontend repo so it stays in-sync with changes.

Related to this, we need a way to "deploy" our frontend changes to various server environments without building & releasing the entire Ruby application. We built a hybrid Amazon S3 Amazon CloudFront solution to host our Webpack bundles. A new CircleCI script builds the bundles and uploads them to S3. The final step in our rollout is to update some keys in Redis so our Rails app knows which bundles to serve. The result of these efforts were significant. Our frontend team now moves independently of our backend team, our build & release process takes only a few minutes, we are now using an edge CDN to serve JS assets, and we have pre-rendered React pages!

#StackDecisionsLaunch #SSR #Microservices #FrontEndRepoSplit

See more
GitHub Actions logo

GitHub Actions

23.6K
27
Automate your workflow from idea to production
23.6K
27
PROS OF GITHUB ACTIONS
  • 8
    Integration with GitHub
  • 5
    Free
  • 3
    Easy to duplicate a workflow
  • 3
    Ready actions in Marketplace
  • 2
    Configs stored in .github
  • 2
    Docker Support
  • 2
    Read actions in Marketplace
  • 1
    Active Development Roadmap
  • 1
    Fast
CONS OF GITHUB ACTIONS
  • 5
    Lacking [skip ci]
  • 4
    Lacking allow failure
  • 3
    Lacking job specific badges
  • 2
    No ssh login to servers
  • 1
    No Deployment Projects
  • 1
    No manual launch

related GitHub Actions posts

Somnath Mahale
Engineering Leader at Altimetrik Corp. · | 8 upvotes · 1.8M views

I am in the process of evaluating CircleCI, Drone.io, and Github Actions to cover my #CI/ CD needs. I would appreciate your advice on comparative study w.r.t. attributes like language-Inclusive support, code-base integration, performance, cost, maintenance, support, ease of use, ability to deal with big projects, etc. based on actual industry experience.

Thanks in advance!

See more
Shubham Chadokar
Software Engineer Specialist at Kaleyra · | 6 upvotes · 125.6K views

I have created a SaaS application. 1 backend service and 2 frontend services, all 3 run on different ports. I am using Amazon ECR images to deploy them on the EC2 server. My code is on GitHub. I want to automate this deployment process. How can I do this, and What tech stack should I use? It should be in sync with what I am currently using. On merge to master, it should build push the image to ECR and then later deploy again in the EC2 with the latest image. Maybe GitHub Actions or AWS CodePipeline would be ideal. Thanks, Shubham

See more