What is Finagle and what are its top alternatives?
Finagle is a distributed systems programming framework that is used by companies like Twitter to build high-performance servers and clients. It provides asynchronous, composable, and protocol-agnostic RPC, as well as simple concurrency and connection management. However, one limitation of Finagle is that it has a learning curve due to its sophisticated design.
- Akka: Akka is a powerful toolkit and runtime for building highly concurrent, distributed, and resilient applications on the JVM. Key features include actor-based concurrency, fault tolerance, location transparency, and scalability. Pros include robust fault-handling mechanisms, while cons may include a steeper learning curve for beginners.
- gRPC: gRPC is a high-performance, open-source RPC framework developed by Google. It supports multiple programming languages and platforms, uses Protocol Buffers for serialization, and provides features like bi-directional streaming and authentication. Pros include efficient network communication, while cons may include limited language support compared to Finagle.
- Netty: Netty is a versatile networking framework that provides an asynchronous event-driven network application framework for rapid development of high-performance protocol servers and clients. Key features include a flexible and extensible API, efficient memory management, and support for various protocols. Pros include high-performance networking capabilities, while cons may include a more manual approach to building network applications.
- Vert.x: Vert.x is a toolkit for building reactive applications on the JVM that offers event-driven and non-blocking programming models. It supports polyglot development, reactive streams, and distributed event bus communication. Pros include seamless integration with various technologies, while cons may involve a complex setup process.
- RSocket: RSocket is a binary protocol for use on byte stream transports. It provides Reactive Streams semantics, multiplexed bidirectional communication, and resumption on connection. Pros include efficient use of resources, while cons may include less widespread adoption compared to Finagle.
- Spring Cloud: Spring Cloud provides tools for building distributed systems on the JVM. It offers features like service discovery, circuit breakers, and distributed tracing. Pros include seamless integration with Spring ecosystem, while cons may include a heavier dependency footprint compared to Finagle.
- Quasar: Quasar is a library that enables lightweight threads for the JVM that are capable of pausing and resuming. It supports reactive programming, async computations, and fine-grained concurrency control. Pros include efficient use of resources, while cons may involve potential compatibility issues with existing codebases.
- RabbitMQ: RabbitMQ is a widely-used message broker that supports multiple messaging protocols. It provides features like message queuing, routing, and clustering. Pros include robust messaging capabilities, while cons may include potential performance bottlenecks in high-throughput scenarios.
- Scribe: Scribe is a scalable and simple O(log(n)) API for aggregating streaming data for logging and monitoring purposes. It offers efficient log aggregation, dynamic configuration, and seamless integration with various data processing pipelines. Pros include simplicity and scalability, while cons may involve limited community support.
- Apache Thrift: Apache Thrift is a scalable, extensible, multi-language remote procedure call (RPC) framework. It supports efficient cross-language development and includes features like serialization, code generation, and transport plugins. Pros include broad language support, while cons may include potential complexity in managing a large codebase.
Top Alternatives to Finagle
- Finatra
At Twitter, Finagle provides the building blocks for most of the code written on the JVM. It has long-served as Twitter's extensible, protocol-agnostic, highly-scalable RPC framework. ...
- gRPC
gRPC is a modern open source high performance RPC framework that can run in any environment. It can efficiently connect services in and across data centers with pluggable support for load balancing, tracing, health checking... ...
- Akka
Akka is a toolkit and runtime for building highly concurrent, distributed, and resilient message-driven applications on the JVM. ...
- Spring Boot
Spring Boot makes it easy to create stand-alone, production-grade Spring based Applications that you can "just run". We take an opinionated view of the Spring platform and third-party libraries so you can get started with minimum fuss. Most Spring Boot applications need very little Spring configuration. ...
- Play
Play Framework makes it easy to build web applications with Java & Scala. Play is based on a lightweight, stateless, web-friendly architecture. Built on Akka, Play provides predictable and minimal resource consumption (CPU, memory, threads) for highly-scalable applications. ...
- Akka HTTP
The Akka HTTP modules implement a full server- and client-side HTTP stack on top of akka-actor and akka-stream. It’s not a web-framework but rather a more general toolkit for providing and consuming HTTP-based services. While interaction with a browser is of course also in scope it is not the primary focus of Akka HTTP. ...
- JavaScript
JavaScript is most known as the scripting language for Web pages, but used in many non-browser environments as well such as node.js or Apache CouchDB. It is a prototype-based, multi-paradigm scripting language that is dynamic,and supports object-oriented, imperative, and functional programming styles. ...
- Python
Python is a general purpose programming language created by Guido Van Rossum. Python is most praised for its elegant syntax and readable code, if you are just beginning your programming career python suits you best. ...
Finagle alternatives & related posts
- Fast7
- Easy6
related Finatra posts
- Higth performance24
- The future of API15
- Easy setup13
- Contract-based5
- Polyglot4
- Garbage2
related gRPC posts
We just launched the Segment Config API (try it out for yourself here) — a set of public REST APIs that enable you to manage your Segment configuration. Behind the scenes the Config API is built with Go , GRPC and Envoy.
At Segment, we build new services in Go by default. The language is simple so new team members quickly ramp up on a codebase. The tool chain is fast so developers get immediate feedback when they break code, tests or integrations with other systems. The runtime is fast so it performs great at scale.
For the newest round of APIs we adopted the GRPC service #framework.
The Protocol Buffer service definition language makes it easy to design type-safe and consistent APIs, thanks to ecosystem tools like the Google API Design Guide for API standards, uber/prototool
for formatting and linting .protos and lyft/protoc-gen-validate
for defining field validations, and grpc-gateway
for defining REST mapping.
With a well designed .proto, its easy to generate a Go server interface and a TypeScript client, providing type-safe RPC between languages.
For the API gateway and RPC we adopted the Envoy service proxy.
The internet-facing segmentapis.com
endpoint is an Envoy front proxy that rate-limits and authenticates every request. It then transcodes a #REST / #JSON request to an upstream GRPC request. The upstream GRPC servers are running an Envoy sidecar configured for Datadog stats.
The result is API #security , #reliability and consistent #observability through Envoy configuration, not code.
We experimented with Swagger service definitions, but the spec is sprawling and the generated clients and server stubs leave a lot to be desired. GRPC and .proto and the Go implementation feels better designed and implemented. Thanks to the GRPC tooling and ecosystem you can generate Swagger from .protos, but it’s effectively impossible to go the other way.
I used GraphQL extensively at a previous employer a few years ago and really appreciated the data-driven schema etc alongside the many other benefits it provided. At that time, it seemed like it was set to replace RESTful APIs and many companies were adopting it.
However, as of late, it seems like interest has been waning for GraphQL as opposed to increasing as I had assumed it would. Am I missing something here? What is the current perspective regarding this technology?
Currently, I'm working with gRPC and was curious as to the state of everything now.
- Great concurrency model32
- Fast17
- Actor Library12
- Open source10
- Resilient7
- Message driven5
- Scalable5
- Mixing futures with Akka tell is difficult3
- Closing of futures2
- No type safety2
- Very difficult to refactor1
- Typed actors still not stable1
related Akka posts
To solve the problem of scheduling and executing arbitrary tasks in its distributed infrastructure, PagerDuty created an open-source tool called Scheduler. Scheduler is written in Scala and uses Cassandra for task persistence. It also adds Apache Kafka to handle task queuing and partitioning, with Akka to structure the library’s concurrency.
The service’s logic schedules a task by passing it to the Scheduler’s Scala API, which serializes the task metadata and enqueues it into Kafka. Scheduler then consumes the tasks, and posts them to Cassandra to prevent data loss.
I decided to use Akka instead of Kafka streams because I have personal relationships at @Lightbend.
Spring Boot
- Powerful and handy149
- Easy setup134
- Java128
- Spring90
- Fast85
- Extensible46
- Lots of "off the shelf" functionalities37
- Cloud Solid32
- Caches well26
- Productive24
- Many receipes around for obscure features24
- Modular23
- Integrations with most other Java frameworks23
- Spring ecosystem is great22
- Auto-configuration21
- Fast Performance With Microservices21
- Community18
- Easy setup, Community Support, Solid for ERP apps17
- One-stop shop15
- Easy to parallelize14
- Cross-platform14
- Easy setup, good for build erp systems, well documented13
- Powerful 3rd party libraries and frameworks13
- Easy setup, Git Integration12
- It's so easier to start a project on spring5
- Kotlin4
- Microservice and Reactive Programming1
- The ability to integrate with the open source ecosystem1
- Heavy weight23
- Annotation ceremony18
- Java13
- Many config files needed11
- Reactive5
- Excellent tools for cloud hosting, since 5.x4
- Java 😒😒1
related Spring Boot posts
We are in the process of building a modern content platform to deliver our content through various channels. We decided to go with Microservices architecture as we wanted scale. Microservice architecture style is an approach to developing an application as a suite of small independently deployable services built around specific business capabilities. You can gain modularity, extensive parallelism and cost-effective scaling by deploying services across many distributed servers. Microservices modularity facilitates independent updates/deployments, and helps to avoid single point of failure, which can help prevent large-scale outages. We also decided to use Event Driven Architecture pattern which is a popular distributed asynchronous architecture pattern used to produce highly scalable applications. The event-driven architecture is made up of highly decoupled, single-purpose event processing components that asynchronously receive and process events.
To build our #Backend capabilities we decided to use the following: 1. #Microservices - Java with Spring Boot , Node.js with ExpressJS and Python with Flask 2. #Eventsourcingframework - Amazon Kinesis , Amazon Kinesis Firehose , Amazon SNS , Amazon SQS, AWS Lambda 3. #Data - Amazon RDS , Amazon DynamoDB , Amazon S3 , MongoDB Atlas
To build #Webapps we decided to use Angular 2 with RxJS
#Devops - GitHub , Travis CI , Terraform , Docker , Serverless
Is learning Spring and Spring Boot for web apps back-end development is still relevant in 2021? Feel free to share your views with comparison to Django/Node.js/ ExpressJS or other frameworks.
Please share some good beginner resources to start learning about spring/spring boot framework to build the web apps.
- Scala81
- Web-friendly architecture55
- Built on akka55
- Stateless50
- High-scalable47
- Fast46
- Open source40
- Java34
- High velocity27
- Fun24
- Lightweight9
- Non-blocking io8
- Developer friendly6
- Simple template engine5
- Scalability4
- Pure love3
- Resource efficient2
- Evolves fast, keep up with releases3
- Unnecessarily complicated1
related Play posts
Some may wonder why did we choose Grails ? Really good question :) We spent quite some time to evaluate what framework to go with and the battle was between Play Scala and Grails ( Groovy ). We have enough experience with both and, to be honest, I absolutely in love with Scala; however, the tipping point for us was the potential speed of development. Grails allows much faster development pace than Play , and as of right now this is the most important parameter. We might convert later though. Also, worth mentioning, by default Grails comes with Gradle as a build tool, so why change?
Scala Akka Kafka Play Spark Framework Hiring for various companies around London and Europe,
Salarys upto £100,000 Junior-Senior Engineers, Scala/Akka/Kafka
Get in touch with me for more details!
related Akka HTTP posts
JavaScript
- Can be used on frontend/backend1.7K
- It's everywhere1.5K
- Lots of great frameworks1.2K
- Fast898
- Light weight745
- Flexible425
- You can't get a device today that doesn't run js392
- Non-blocking i/o286
- Ubiquitousness237
- Expressive191
- Extended functionality to web pages55
- Relatively easy language49
- Executed on the client side46
- Relatively fast to the end user30
- Pure Javascript25
- Functional programming21
- Async15
- Full-stack13
- Setup is easy12
- Future Language of The Web12
- Its everywhere12
- Because I love functions11
- JavaScript is the New PHP11
- Like it or not, JS is part of the web standard10
- Expansive community9
- Everyone use it9
- Can be used in backend, frontend and DB9
- Easy9
- Most Popular Language in the World8
- Powerful8
- Can be used both as frontend and backend as well8
- For the good parts8
- No need to use PHP8
- Easy to hire developers8
- Agile, packages simple to use7
- Love-hate relationship7
- Photoshop has 3 JS runtimes built in7
- Evolution of C7
- It's fun7
- Hard not to use7
- Versitile7
- Its fun and fast7
- Nice7
- Popularized Class-Less Architecture & Lambdas7
- Supports lambdas and closures7
- It let's me use Babel & Typescript6
- Can be used on frontend/backend/Mobile/create PRO Ui6
- 1.6K Can be used on frontend/backend6
- Client side JS uses the visitors CPU to save Server Res6
- Easy to make something6
- Clojurescript5
- Promise relationship5
- Stockholm Syndrome5
- Function expressions are useful for callbacks5
- Scope manipulation5
- Everywhere5
- Client processing5
- What to add5
- Because it is so simple and lightweight4
- Only Programming language on browser4
- Test1
- Hard to learn1
- Test21
- Not the best1
- Easy to understand1
- Subskill #41
- Easy to learn1
- Hard 彤0
- A constant moving target, too much churn22
- Horribly inconsistent20
- Javascript is the New PHP15
- No ability to monitor memory utilitization9
- Shows Zero output in case of ANY error8
- Thinks strange results are better than errors7
- Can be ugly6
- No GitHub3
- Slow2
- HORRIBLE DOCUMENTS, faulty code, repo has bugs0
related JavaScript posts
Oof. I have truly hated JavaScript for a long time. Like, for over twenty years now. Like, since the Clinton administration. It's always been a nightmare to deal with all of the aspects of that silly language.
But wowza, things have changed. Tooling is just way, way better. I'm primarily web-oriented, and using React and Apollo together the past few years really opened my eyes to building rich apps. And I deeply apologize for using the phrase rich apps; I don't think I've ever said such Enterprisey words before.
But yeah, things are different now. I still love Rails, and still use it for a lot of apps I build. But it's that silly rich apps phrase that's the problem. Users have way more comprehensive expectations than they did even five years ago, and the JS community does a good job at building tools and tech that tackle the problems of making heavy, complicated UI and frontend work.
Obviously there's a lot of things happening here, so just saying "JavaScript isn't terrible" might encompass a huge amount of libraries and frameworks. But if you're like me, yeah, give things another shot- I'm somehow not hating on JavaScript anymore and... gulp... I kinda love it.
How Uber developed the open source, end-to-end distributed tracing Jaeger , now a CNCF project:
Distributed tracing is quickly becoming a must-have component in the tools that organizations use to monitor their complex, microservice-based architectures. At Uber, our open source distributed tracing system Jaeger saw large-scale internal adoption throughout 2016, integrated into hundreds of microservices and now recording thousands of traces every second.
Here is the story of how we got here, from investigating off-the-shelf solutions like Zipkin, to why we switched from pull to push architecture, and how distributed tracing will continue to evolve:
https://eng.uber.com/distributed-tracing/
(GitHub Pages : https://www.jaegertracing.io/, GitHub: https://github.com/jaegertracing/jaeger)
Bindings/Operator: Python Java Node.js Go C++ Kubernetes JavaScript OpenShift C# Apache Spark
Python
- Great libraries1.2K
- Readable code962
- Beautiful code847
- Rapid development788
- Large community690
- Open source438
- Elegant393
- Great community282
- Object oriented272
- Dynamic typing220
- Great standard library77
- Very fast60
- Functional programming55
- Easy to learn49
- Scientific computing45
- Great documentation35
- Productivity29
- Easy to read28
- Matlab alternative28
- Simple is better than complex24
- It's the way I think20
- Imperative19
- Free18
- Very programmer and non-programmer friendly18
- Powerfull language17
- Machine learning support17
- Fast and simple16
- Scripting14
- Explicit is better than implicit12
- Ease of development11
- Clear and easy and powerfull10
- Unlimited power9
- It's lean and fun to code8
- Import antigravity8
- Print "life is short, use python"7
- Python has great libraries for data processing7
- Although practicality beats purity6
- Now is better than never6
- Great for tooling6
- Readability counts6
- Rapid Prototyping6
- I love snakes6
- Flat is better than nested6
- Fast coding and good for competitions6
- There should be one-- and preferably only one --obvious6
- High Documented language6
- Great for analytics5
- Lists, tuples, dictionaries5
- Easy to learn and use4
- Simple and easy to learn4
- Easy to setup and run smooth4
- Web scraping4
- CG industry needs4
- Socially engaged community4
- Complex is better than complicated4
- Multiple Inheritence4
- Beautiful is better than ugly4
- Plotting4
- Many types of collections3
- Flexible and easy3
- It is Very easy , simple and will you be love programmi3
- If the implementation is hard to explain, it's a bad id3
- Special cases aren't special enough to break the rules3
- Pip install everything3
- List comprehensions3
- No cruft3
- Generators3
- Import this3
- If the implementation is easy to explain, it may be a g3
- Can understand easily who are new to programming2
- Batteries included2
- Securit2
- Good for hacking2
- Better outcome2
- Only one way to do it2
- Because of Netflix2
- A-to-Z2
- Should START with this but not STICK with This2
- Powerful language for AI2
- Automation friendly1
- Sexy af1
- Slow1
- Procedural programming1
- Ni0
- Powerful0
- Keep it simple0
- Still divided between python 2 and python 353
- Performance impact28
- Poor syntax for anonymous functions26
- GIL22
- Package management is a mess19
- Too imperative-oriented14
- Hard to understand12
- Dynamic typing12
- Very slow12
- Indentations matter a lot8
- Not everything is expression8
- Incredibly slow7
- Explicit self parameter in methods7
- Requires C functions for dynamic modules6
- Poor DSL capabilities6
- No anonymous functions6
- Fake object-oriented programming5
- Threading5
- The "lisp style" whitespaces5
- Official documentation is unclear.5
- Hard to obfuscate5
- Circular import5
- Lack of Syntax Sugar leads to "the pyramid of doom"4
- The benevolent-dictator-for-life quit4
- Not suitable for autocomplete4
- Meta classes2
- Training wheels (forced indentation)1
related Python posts
How Uber developed the open source, end-to-end distributed tracing Jaeger , now a CNCF project:
Distributed tracing is quickly becoming a must-have component in the tools that organizations use to monitor their complex, microservice-based architectures. At Uber, our open source distributed tracing system Jaeger saw large-scale internal adoption throughout 2016, integrated into hundreds of microservices and now recording thousands of traces every second.
Here is the story of how we got here, from investigating off-the-shelf solutions like Zipkin, to why we switched from pull to push architecture, and how distributed tracing will continue to evolve:
https://eng.uber.com/distributed-tracing/
(GitHub Pages : https://www.jaegertracing.io/, GitHub: https://github.com/jaegertracing/jaeger)
Bindings/Operator: Python Java Node.js Go C++ Kubernetes JavaScript OpenShift C# Apache Spark
Winds 2.0 is an open source Podcast/RSS reader developed by Stream with a core goal to enable a wide range of developers to contribute.
We chose JavaScript because nearly every developer knows or can, at the very least, read JavaScript. With ES6 and Node.js v10.x.x, it’s become a very capable language. Async/Await is powerful and easy to use (Async/Await vs Promises). Babel allows us to experiment with next-generation JavaScript (features that are not in the official JavaScript spec yet). Yarn allows us to consistently install packages quickly (and is filled with tons of new tricks)
We’re using JavaScript for everything – both front and backend. Most of our team is experienced with Go and Python, so Node was not an obvious choice for this app.
Sure... there will be haters who refuse to acknowledge that there is anything remotely positive about JavaScript (there are even rants on Hacker News about Node.js); however, without writing completely in JavaScript, we would not have seen the results we did.
#FrameworksFullStack #Languages