Alternatives to Heroku logo

Alternatives to Heroku

DigitalOcean, Google App Engine, Firebase, Docker, and Microsoft Azure are the most popular alternatives and competitors to Heroku.
8.8K
6.4K
+ 1
3.1K

What is Heroku and what are its top alternatives?

Heroku is a cloud application platform – a new way of building and deploying web apps. Heroku lets app developers spend 100% of their time on their application code, not managing servers, deployment, ongoing operations, or scaling.
Heroku is a tool in the Platform as a Service category of a tech stack.

Heroku alternatives & related posts

DigitalOcean logo

DigitalOcean

7.3K
4.6K
2.6K
7.3K
4.6K
+ 1
2.6K
Deploy an SSD cloud server in less than 55 seconds with a dedicated IP and root access.
DigitalOcean logo
DigitalOcean
VS
Heroku logo
Heroku

related DigitalOcean posts

Rajat Jain
Rajat Jain
Devops Engineer at Aurochssoftware · | 1 upvotes · 16.6K views
Amazon EC2
Amazon EC2
Amazon S3
Amazon S3
Bitbucket
Bitbucket
GitLab
GitLab
PyCharm
PyCharm
Ubuntu
Ubuntu
DigitalOcean
DigitalOcean
Docker
Docker
Git
Git

Building my skill set to become Devops Engineer-Tool chain: Amazon EC2, Amazon S3, Bitbucket, GitLab, PyCharm, Ubuntu, DigitalOcean, Docker, Git

IT engineer with more than 6 months of experience in startups with focus on DevOps, Cloud infrastructure & Testing (QA). I had set up CI process, monitoring and infrastructure on dev/test (lower) environments

See more

related Google App Engine posts

Nick Rockwell
Nick Rockwell
CTO at NY Times · | 11 upvotes · 67.7K views
atThe New York TimesThe New York Times
Amazon EC2
Amazon EC2
Google App Engine
Google App Engine
Google Kubernetes Engine
Google Kubernetes Engine
Kubernetes
Kubernetes
#AWS
#GCP
#AWStoGCPmigration
#Cloudmigration
#Migration

So, the shift from Amazon EC2 to Google App Engine and generally #AWS to #GCP was a long decision and in the end, it's one that we've taken with eyes open and that we reserve the right to modify at any time. And to be clear, we continue to do a lot of stuff with AWS. But, by default, the content of the decision was, for our consumer-facing products, we're going to use GCP first. And if there's some reason why we don't think that's going to work out great, then we'll happily use AWS. In practice, that hasn't really happened. We've been able to meet almost 100% of our needs in GCP.

So it's basically mostly Google Kubernetes Engine , we're mostly running stuff on Kubernetes right now.

#AWStoGCPmigration #cloudmigration #migration

See more

related Firebase posts

fontumi
fontumi
Firebase
Firebase
Node.js
Node.js
FeathersJS
FeathersJS
Vue.js
Vue.js
Google Compute Engine
Google Compute Engine
Dialogflow
Dialogflow
Cloud Firestore
Cloud Firestore
Git
Git
GitHub
GitHub
Visual Studio Code
Visual Studio Code

Fontumi focuses on the development of telecommunications solutions. We have opted for technologies that allow agile development and great scalability.

Firebase and Node.js + FeathersJS are technologies that we have used on the server side. Vue.js is our main framework for clients.

Our latest products launched have been focused on the integration of AI systems for enriched conversations. Google Compute Engine , along with Dialogflow and Cloud Firestore have been important tools for this work.

Git + GitHub + Visual Studio Code is a killer stack.

See more
Aliadoc Team
Aliadoc Team
at aliadoc.com · | 5 upvotes · 225.7K views
atAliadocAliadoc
React
React
Create React App
Create React App
CloudFlare
CloudFlare
Firebase
Firebase
Cloud Functions for Firebase
Cloud Functions for Firebase
Google App Engine
Google App Engine
Google Cloud Storage
Google Cloud Storage
Serverless
Serverless
Visual Studio Code
Visual Studio Code
Bitbucket
Bitbucket
#Aliadoc

In #Aliadoc, we're exploring the crowdfunding option to get traction before launch. We are building a SaaS platform for website design customization.

For the Admin UI and website editor we use React and we're currently transitioning from a Create React App setup to a custom one because our needs have become more specific. We use CloudFlare as much as possible, it's a great service.

For routing dynamic resources and proxy tasks to feed websites to the editor we leverage CloudFlare Workers for improved responsiveness. We use Firebase for our hosting needs and user authentication while also using several Cloud Functions for Firebase to interact with other services along with Google App Engine and Google Cloud Storage, but also the Real Time Database is on the radar for collaborative website editing.

We generally hate configuration but honestly because of the stage of our project we lack resources for doing heavy sysops work. So we are basically just relying on Serverless technologies as much as we can to do all server side processing.

Visual Studio Code definitively makes programming a much easier and enjoyable task, we just love it. We combine it with Bitbucket for our source code control needs.

See more

related Docker posts

Tim Nolet
Tim Nolet
Founder, Engineer & Dishwasher at Checkly · | 20 upvotes · 406.4K views
atChecklyHQChecklyHQ
Heroku
Heroku
Docker
Docker
GitHub
GitHub
Node.js
Node.js
hapi
hapi
Vue.js
Vue.js
AWS Lambda
AWS Lambda
Amazon S3
Amazon S3
PostgreSQL
PostgreSQL
Knex.js
Knex.js
vuex
vuex

Heroku Docker GitHub Node.js hapi Vue.js AWS Lambda Amazon S3 PostgreSQL Knex.js Checkly is a fairly young company and we're still working hard to find the correct mix of product features, price and audience.

We are focussed on tech B2B, but I always wanted to serve solo developers too. So I decided to make a $7 plan.

Why $7? Simply put, it seems to be a sweet spot for tech companies: Heroku, Docker, Github, Appoptics (Librato) all offer $7 plans. They must have done a ton of research into this, so why not piggy back that and try it out.

Enough biz talk, onto tech. The challenges were:

  • Slice of a portion of the functionality so a $7 plan is still profitable. We call this the "plan limits"
  • Update API and back end services to handle and enforce plan limits.
  • Update the UI to kindly state plan limits are in effect on some part of the UI.
  • Update the pricing page to reflect all changes.
  • Keep the actual processing backend, storage and API's as untouched as possible.

In essence, we went from strictly volume based pricing to value based pricing. Here come the technical steps & decisions we made to get there.

  1. We updated our PostgreSQL schema so plans now have an array of "features". These are string constants that represent feature toggles.
  2. The Vue.js frontend reads these from the vuex store on login.
  3. Based on these values, the UI has simple v-if statements to either just show the feature or show a friendly "please upgrade" button.
  4. The hapi API has a hook on each relevant API endpoint that checks whether a user's plan has the feature enabled, or not.

Side note: We offer 10 SMS messages per month on the developer plan. However, we were not actually counting how many people were sending. We had to update our alerting daemon (that runs on Heroku and triggers SMS messages via AWS SNS) to actually bump a counter.

What we build is basically feature-toggling based on plan features. It is very extensible for future additions. Our scheduling and storage backend that actually runs users' monitoring requests (AWS Lambda) and stores the results (S3 and Postgres) has no knowledge of all of this and remained unchanged.

Hope this helps anyone building out their SaaS and is in a similar situation.

See more
Tymoteusz Paul
Tymoteusz Paul
Devops guy at X20X Development LTD · | 17 upvotes · 624.7K views
Vagrant
Vagrant
VirtualBox
VirtualBox
Ansible
Ansible
Elasticsearch
Elasticsearch
Kibana
Kibana
Logstash
Logstash
TeamCity
TeamCity
Jenkins
Jenkins
Slack
Slack
Apache Maven
Apache Maven
Vault
Vault
Git
Git
Docker
Docker
CircleCI
CircleCI
LXC
LXC
Amazon EC2
Amazon EC2

Often enough I have to explain my way of going about setting up a CI/CD pipeline with multiple deployment platforms. Since I am a bit tired of yapping the same every single time, I've decided to write it up and share with the world this way, and send people to read it instead ;). I will explain it on "live-example" of how the Rome got built, basing that current methodology exists only of readme.md and wishes of good luck (as it usually is ;)).

It always starts with an app, whatever it may be and reading the readmes available while Vagrant and VirtualBox is installing and updating. Following that is the first hurdle to go over - convert all the instruction/scripts into Ansible playbook(s), and only stopping when doing a clear vagrant up or vagrant reload we will have a fully working environment. As our Vagrant environment is now functional, it's time to break it! This is the moment to look for how things can be done better (too rigid/too lose versioning? Sloppy environment setup?) and replace them with the right way to do stuff, one that won't bite us in the backside. This is the point, and the best opportunity, to upcycle the existing way of doing dev environment to produce a proper, production-grade product.

I should probably digress here for a moment and explain why. I firmly believe that the way you deploy production is the same way you should deploy develop, shy of few debugging-friendly setting. This way you avoid the discrepancy between how production work vs how development works, which almost always causes major pains in the back of the neck, and with use of proper tools should mean no more work for the developers. That's why we start with Vagrant as developer boxes should be as easy as vagrant up, but the meat of our product lies in Ansible which will do meat of the work and can be applied to almost anything: AWS, bare metal, docker, LXC, in open net, behind vpn - you name it.

We must also give proper consideration to monitoring and logging hoovering at this point. My generic answer here is to grab Elasticsearch, Kibana, and Logstash. While for different use cases there may be better solutions, this one is well battle-tested, performs reasonably and is very easy to scale both vertically (within some limits) and horizontally. Logstash rules are easy to write and are well supported in maintenance through Ansible, which as I've mentioned earlier, are at the very core of things, and creating triggers/reports and alerts based on Elastic and Kibana is generally a breeze, including some quite complex aggregations.

If we are happy with the state of the Ansible it's time to move on and put all those roles and playbooks to work. Namely, we need something to manage our CI/CD pipelines. For me, the choice is obvious: TeamCity. It's modern, robust and unlike most of the light-weight alternatives, it's transparent. What I mean by that is that it doesn't tell you how to do things, doesn't limit your ways to deploy, or test, or package for that matter. Instead, it provides a developer-friendly and rich playground for your pipelines. You can do most the same with Jenkins, but it has a quite dated look and feel to it, while also missing some key functionality that must be brought in via plugins (like quality REST API which comes built-in with TeamCity). It also comes with all the common-handy plugins like Slack or Apache Maven integration.

The exact flow between CI and CD varies too greatly from one application to another to describe, so I will outline a few rules that guide me in it: 1. Make build steps as small as possible. This way when something breaks, we know exactly where, without needing to dig and root around. 2. All security credentials besides development environment must be sources from individual Vault instances. Keys to those containers should exist only on the CI/CD box and accessible by a few people (the less the better). This is pretty self-explanatory, as anything besides dev may contain sensitive data and, at times, be public-facing. Because of that appropriate security must be present. TeamCity shines in this department with excellent secrets-management. 3. Every part of the build chain shall consume and produce artifacts. If it creates nothing, it likely shouldn't be its own build. This way if any issue shows up with any environment or version, all developer has to do it is grab appropriate artifacts to reproduce the issue locally. 4. Deployment builds should be directly tied to specific Git branches/tags. This enables much easier tracking of what caused an issue, including automated identifying and tagging the author (nothing like automated regression testing!).

Speaking of deployments, I generally try to keep it simple but also with a close eye on the wallet. Because of that, I am more than happy with AWS or another cloud provider, but also constantly peeking at the loads and do we get the value of what we are paying for. Often enough the pattern of use is not constantly erratic, but rather has a firm baseline which could be migrated away from the cloud and into bare metal boxes. That is another part where this approach strongly triumphs over the common Docker and CircleCI setup, where you are very much tied in to use cloud providers and getting out is expensive. Here to embrace bare-metal hosting all you need is a help of some container-based self-hosting software, my personal preference is with Proxmox and LXC. Following that all you must write are ansible scripts to manage hardware of Proxmox, similar way as you do for Amazon EC2 (ansible supports both greatly) and you are good to go. One does not exclude another, quite the opposite, as they can live in great synergy and cut your costs dramatically (the heavier your base load, the bigger the savings) while providing production-grade resiliency.

See more
Microsoft Azure logo

Microsoft Azure

7.7K
3.3K
728
7.7K
3.3K
+ 1
728
Integrated cloud services and infrastructure to support computing, database, analytics, mobile, and web scenarios.
Microsoft Azure logo
Microsoft Azure
VS
Heroku logo
Heroku

related Microsoft Azure posts

Omar Mehilba
Omar Mehilba
Co-Founder and COO at Magalix · | 16 upvotes · 80.9K views
atMagalixMagalix
Kubernetes
Kubernetes
Microsoft Azure
Microsoft Azure
Google Kubernetes Engine
Google Kubernetes Engine
Amazon EC2
Amazon EC2
Go
Go
Python
Python
#Autopilot

We are hardcore Kubernetes users and contributors. We loved the automation it provides. However, as our team grew and added more clusters and microservices, capacity and resources management becomes a massive pain to us. We started suffering from a lot of outages and unexpected behavior as we promote our code from dev to production environments. Luckily we were working on our AI-powered tools to understand different dependencies, predict usage, and calculate the right resources and configurations that should be applied to our infrastructure and microservices. We dogfooded our agent (http://github.com/magalixcorp/magalix-agent) and were able to stabilize as the #autopilot continuously recovered any miscalculations we made or because of unexpected changes in workloads. We are open sourcing our agent in a few days. Check it out and let us know what you think! We run workloads on Microsoft Azure Google Kubernetes Engine and Amazon EC2 and we're all about Go and Python!

See more
Kestas Barzdaitis
Kestas Barzdaitis
Entrepreneur & Engineer · | 14 upvotes · 130.4K views
atCodeFactorCodeFactor
Kubernetes
Kubernetes
CodeFactor.io
CodeFactor.io
Amazon EC2
Amazon EC2
Microsoft Azure
Microsoft Azure
Google Compute Engine
Google Compute Engine
Docker
Docker
AWS Lambda
AWS Lambda
Azure Functions
Azure Functions
Google Cloud Functions
Google Cloud Functions
#SAAS
#IAAS
#Containerization
#Autoscale
#Startup
#Automation
#Machinelearning
#AI
#Devops

CodeFactor being a #SAAS product, our goal was to run on a cloud-native infrastructure since day one. We wanted to stay product focused, rather than having to work on the infrastructure that supports the application. We needed a cloud-hosting provider that would be reliable, economical and most efficient for our product.

CodeFactor.io aims to provide an automated and frictionless code review service for software developers. That requires agility, instant provisioning, autoscaling, security, availability and compliance management features. We looked at the top three #IAAS providers that take up the majority of market share: Amazon's Amazon EC2 , Microsoft's Microsoft Azure, and Google Compute Engine.

AWS has been available since 2006 and has developed the most extensive services ant tools variety at a massive scale. Azure and GCP are about half the AWS age, but also satisfied our technical requirements.

It is worth noting that even though all three providers support Docker containerization services, GCP has the most robust offering due to their investments in Kubernetes. Also, if you are a Microsoft shop, and develop in .NET - Visual Studio Azure shines at integration there and all your existing .NET code works seamlessly on Azure. All three providers have serverless computing offerings (AWS Lambda, Azure Functions, and Google Cloud Functions). Additionally, all three providers have machine learning tools, but GCP appears to be the most developer-friendly, intuitive and complete when it comes to #Machinelearning and #AI.

The prices between providers are competitive across the board. For our requirements, AWS would have been the most expensive, GCP the least expensive and Azure was in the middle. Plus, if you #Autoscale frequently with l