Alternatives to k3s logo

Alternatives to k3s

Kind, Rancher, Docker Swarm, Docker, and Kubernetes are the most popular alternatives and competitors to k3s.
42
158
+ 1
9

What is k3s and what are its top alternatives?

Certified Kubernetes distribution designed for production workloads in unattended, resource-constrained, remote locations or inside IoT appliances. Supports something as small as a Raspberry Pi or as large as an AWS a1.4xlarge 32GiB server.
k3s is a tool in the Container Tools category of a tech stack.
k3s is an open source tool with 17K GitHub stars and 1.4K GitHub forks. Here’s a link to k3s's open source repository on GitHub

Top Alternatives to k3s

  • Kind

    Kind

    It is a tool for running local Kubernetes clusters using Docker container ‚Äúnodes‚ÄĚ. It was primarily designed for testing Kubernetes itself, but may be used for local development or CI. ...

  • Rancher

    Rancher

    Rancher is an open source container management platform that includes full distributions of Kubernetes, Apache Mesos and Docker Swarm, and makes it simple to operate container clusters on any cloud or infrastructure platform. ...

  • Docker Swarm

    Docker Swarm

    Swarm serves the standard Docker API, so any tool which already communicates with a Docker daemon can use Swarm to transparently scale to multiple hosts: Dokku, Compose, Krane, Deis, DockerUI, Shipyard, Drone, Jenkins... and, of course, the Docker client itself. ...

  • Docker

    Docker

    The Docker Platform is the industry-leading container platform for continuous, high-velocity innovation, enabling organizations to seamlessly build and share any application ‚ÄĒ from legacy to what comes next ‚ÄĒ and securely run them anywhere ...

  • Kubernetes

    Kubernetes

    Kubernetes is an open source orchestration system for Docker containers. It handles scheduling onto nodes in a compute cluster and actively manages workloads to ensure that their state matches the users declared intentions. ...

  • Docker Compose

    Docker Compose

    With Compose, you define a multi-container application in a single file, then spin your application up in a single command which does everything that needs to be done to get it running. ...

  • Helm

    Helm

    Helm is the best way to find, share, and use software built for Kubernetes.

  • Spring Cloud

    Spring Cloud

    It provides tools for developers to quickly build some of the common patterns in distributed systems. ...

k3s alternatives & related posts

Kind logo

Kind

9
27
0
Run local Kubernetes clusters using Docker
9
27
+ 1
0
PROS OF KIND
    Be the first to leave a pro
    CONS OF KIND
      Be the first to leave a con

      related Kind posts

      Rancher logo

      Rancher

      777
      1.2K
      644
      Open Source Platform for Running a Private Container Service
      777
      1.2K
      + 1
      644
      PROS OF RANCHER
      • 103
        Easy to use
      • 79
        Open source and totally free
      • 63
        Multi-host docker-compose support
      • 58
        Load balancing and health check included
      • 58
        Simple
      • 44
        Rolling upgrades, green/blue upgrades feature
      • 42
        Dns and service discovery out-of-the-box
      • 37
        Only requires docker
      • 34
        Multitenant and permission management
      • 29
        Easy to use and feature rich
      • 11
        Cross cloud compatible
      • 11
        Does everything needed for a docker infrastructure
      • 8
        Simple and powerful
      • 8
        Next-gen platform
      • 7
        Very Docker-friendly
      • 6
        Support Kubernetes and Swarm
      • 6
        Application catalogs with stack templates (wizards)
      • 6
        Supports Apache Mesos, Docker Swarm, and Kubernetes
      • 6
        Rolling and blue/green upgrades deployments
      • 6
        High Availability service: keeps your app up 24/7
      • 5
        Easy to use service catalog
      • 4
        Very intuitive UI
      • 4
        IaaS-vendor independent, supports hybrid/multi-cloud
      • 4
        Awesome support
      • 3
        Scalable
      • 2
        Requires less infrastructure requirements
      CONS OF RANCHER
      • 7
        Hosting Rancher can be complicated

      related Rancher posts

      Docker Swarm logo

      Docker Swarm

      677
      806
      267
      Native clustering for Docker. Turn a pool of Docker hosts into a single, virtual host.
      677
      806
      + 1
      267
      PROS OF DOCKER SWARM
      • 54
        Docker friendly
      • 45
        Easy to setup
      • 39
        Standard Docker API
      • 37
        Easy to use
      • 22
        Native
      • 21
        Free
      • 12
        Clustering made easy
      • 11
        Simple usage
      • 10
        Integral part of docker
      • 5
        Cross Platform
      • 4
        Labels and annotations
      • 3
        Performance
      • 2
        Shallow learning curve
      • 2
        Easy Networking
      CONS OF DOCKER SWARM
      • 7
        Low adoption

      related Docker Swarm posts

      Yshay Yaacobi

      Our first experience with .NET core was when we developed our OSS feature management platform - Tweek (https://github.com/soluto/tweek). We wanted to create a solution that is able to run anywhere (super important for OSS), has excellent performance characteristics and can fit in a multi-container architecture. We decided to implement our rule engine processor in F# , our main service was implemented in C# and other components were built using JavaScript / TypeScript and Go.

      Visual Studio Code worked really well for us as well, it worked well with all our polyglot services and the .Net core integration had great cross-platform developer experience (to be fair, F# was a bit trickier) - actually, each of our team members used a different OS (Ubuntu, macos, windows). Our production deployment ran for a time on Docker Swarm until we've decided to adopt Kubernetes with almost seamless migration process.

      After our positive experience of running .Net core workloads in containers and developing Tweek's .Net services on non-windows machines, C# had gained back some of its popularity (originally lost to Node.js), and other teams have been using it for developing microservices, k8s sidecars (like https://github.com/Soluto/airbag), cli tools, serverless functions and other projects...

      See more
      Simon Reymann
      Senior Fullstack Developer at QUANTUSflow Software GmbH · | 28 upvotes · 2.6M views

      Our whole DevOps stack consists of the following tools:

      • GitHub (incl. GitHub Pages/Markdown for Documentation, GettingStarted and HowTo's) for collaborative review and code management tool
      • Respectively Git as revision control system
      • SourceTree as Git GUI
      • Visual Studio Code as IDE
      • CircleCI for continuous integration (automatize development process)
      • Prettier / TSLint / ESLint as code linter
      • SonarQube as quality gate
      • Docker as container management (incl. Docker Compose for multi-container application management)
      • VirtualBox for operating system simulation tests
      • Kubernetes as cluster management for docker containers
      • Heroku for deploying in test environments
      • nginx as web server (preferably used as facade server in production environment)
      • SSLMate (using OpenSSL) for certificate management
      • Amazon EC2 (incl. Amazon S3) for deploying in stage (production-like) and production environments
      • PostgreSQL as preferred database system
      • Redis as preferred in-memory database/store (great for caching)

      The main reason we have chosen Kubernetes over Docker Swarm is related to the following artifacts:

      • Key features: Easy and flexible installation, Clear dashboard, Great scaling operations, Monitoring is an integral part, Great load balancing concepts, Monitors the condition and ensures compensation in the event of failure.
      • Applications: An application can be deployed using a combination of pods, deployments, and services (or micro-services).
      • Functionality: Kubernetes as a complex installation and setup process, but it not as limited as Docker Swarm.
      • Monitoring: It supports multiple versions of logging and monitoring when the services are deployed within the cluster (Elasticsearch/Kibana (ELK), Heapster/Grafana, Sysdig cloud integration).
      • Scalability: All-in-one framework for distributed systems.
      • Other Benefits: Kubernetes is backed by the Cloud Native Computing Foundation (CNCF), huge community among container orchestration tools, it is an open source and modular tool that works with any OS.
      See more
      Docker logo

      Docker

      98.4K
      79.4K
      3.8K
      Enterprise Container Platform for High-Velocity Innovation.
      98.4K
      79.4K
      + 1
      3.8K
      PROS OF DOCKER
      • 821
        Rapid integration and build up
      • 688
        Isolation
      • 517
        Open source
      • 504
        Testa­bil­i­ty and re­pro­ducibil­i­ty
      • 459
        Lightweight
      • 217
        Standardization
      • 182
        Scalable
      • 105
        Upgrading / down­grad­ing / ap­pli­ca­tion versions
      • 86
        Security
      • 84
        Private paas environments
      • 33
        Portability
      • 25
        Limit resource usage
      • 15
        I love the way docker has changed virtualization
      • 15
        Game changer
      • 12
        Fast
      • 11
        Concurrency
      • 7
        Docker's Compose tools
      • 4
        Fast and Portable
      • 4
        Easy setup
      • 4
        Because its fun
      • 3
        Makes shipping to production very simple
      • 2
        It's dope
      • 1
        Highly useful
      • 1
        MacOS support FAKE
      • 1
        Its cool
      • 1
        Docker hub for the FTW
      • 1
        Very easy to setup integrate and build
      • 1
        Package the environment with the application
      • 1
        Does a nice job hogging memory
      • 1
        Open source and highly configurable
      • 1
        Simplicity, isolation, resource effective
      CONS OF DOCKER
      • 7
        New versions == broken features
      • 4
        Documentation not always in sync
      • 3
        Moves quickly
      • 3
        Unreliable networking

      related Docker posts

      Simon Reymann
      Senior Fullstack Developer at QUANTUSflow Software GmbH · | 28 upvotes · 2.6M views

      Our whole DevOps stack consists of the following tools:

      • GitHub (incl. GitHub Pages/Markdown for Documentation, GettingStarted and HowTo's) for collaborative review and code management tool
      • Respectively Git as revision control system
      • SourceTree as Git GUI
      • Visual Studio Code as IDE
      • CircleCI for continuous integration (automatize development process)
      • Prettier / TSLint / ESLint as code linter
      • SonarQube as quality gate
      • Docker as container management (incl. Docker Compose for multi-container application management)
      • VirtualBox for operating system simulation tests
      • Kubernetes as cluster management for docker containers
      • Heroku for deploying in test environments
      • nginx as web server (preferably used as facade server in production environment)
      • SSLMate (using OpenSSL) for certificate management
      • Amazon EC2 (incl. Amazon S3) for deploying in stage (production-like) and production environments
      • PostgreSQL as preferred database system
      • Redis as preferred in-memory database/store (great for caching)

      The main reason we have chosen Kubernetes over Docker Swarm is related to the following artifacts:

      • Key features: Easy and flexible installation, Clear dashboard, Great scaling operations, Monitoring is an integral part, Great load balancing concepts, Monitors the condition and ensures compensation in the event of failure.
      • Applications: An application can be deployed using a combination of pods, deployments, and services (or micro-services).
      • Functionality: Kubernetes as a complex installation and setup process, but it not as limited as Docker Swarm.
      • Monitoring: It supports multiple versions of logging and monitoring when the services are deployed within the cluster (Elasticsearch/Kibana (ELK), Heapster/Grafana, Sysdig cloud integration).
      • Scalability: All-in-one framework for distributed systems.
      • Other Benefits: Kubernetes is backed by the Cloud Native Computing Foundation (CNCF), huge community among container orchestration tools, it is an open source and modular tool that works with any OS.
      See more
      Tymoteusz Paul
      Devops guy at X20X Development LTD · | 21 upvotes · 4.3M views

      Often enough I have to explain my way of going about setting up a CI/CD pipeline with multiple deployment platforms. Since I am a bit tired of yapping the same every single time, I've decided to write it up and share with the world this way, and send people to read it instead ;). I will explain it on "live-example" of how the Rome got built, basing that current methodology exists only of readme.md and wishes of good luck (as it usually is ;)).

      It always starts with an app, whatever it may be and reading the readmes available while Vagrant and VirtualBox is installing and updating. Following that is the first hurdle to go over - convert all the instruction/scripts into Ansible playbook(s), and only stopping when doing a clear vagrant up or vagrant reload we will have a fully working environment. As our Vagrant environment is now functional, it's time to break it! This is the moment to look for how things can be done better (too rigid/too lose versioning? Sloppy environment setup?) and replace them with the right way to do stuff, one that won't bite us in the backside. This is the point, and the best opportunity, to upcycle the existing way of doing dev environment to produce a proper, production-grade product.

      I should probably digress here for a moment and explain why. I firmly believe that the way you deploy production is the same way you should deploy develop, shy of few debugging-friendly setting. This way you avoid the discrepancy between how production work vs how development works, which almost always causes major pains in the back of the neck, and with use of proper tools should mean no more work for the developers. That's why we start with Vagrant as developer boxes should be as easy as vagrant up, but the meat of our product lies in Ansible which will do meat of the work and can be applied to almost anything: AWS, bare metal, docker, LXC, in open net, behind vpn - you name it.

      We must also give proper consideration to monitoring and logging hoovering at this point. My generic answer here is to grab Elasticsearch, Kibana, and Logstash. While for different use cases there may be better solutions, this one is well battle-tested, performs reasonably and is very easy to scale both vertically (within some limits) and horizontally. Logstash rules are easy to write and are well supported in maintenance through Ansible, which as I've mentioned earlier, are at the very core of things, and creating triggers/reports and alerts based on Elastic and Kibana is generally a breeze, including some quite complex aggregations.

      If we are happy with the state of the Ansible it's time to move on and put all those roles and playbooks to work. Namely, we need something to manage our CI/CD pipelines. For me, the choice is obvious: TeamCity. It's modern, robust and unlike most of the light-weight alternatives, it's transparent. What I mean by that is that it doesn't tell you how to do things, doesn't limit your ways to deploy, or test, or package for that matter. Instead, it provides a developer-friendly and rich playground for your pipelines. You can do most the same with Jenkins, but it has a quite dated look and feel to it, while also missing some key functionality that must be brought in via plugins (like quality REST API which comes built-in with TeamCity). It also comes with all the common-handy plugins like Slack or Apache Maven integration.

      The exact flow between CI and CD varies too greatly from one application to another to describe, so I will outline a few rules that guide me in it: 1. Make build steps as small as possible. This way when something breaks, we know exactly where, without needing to dig and root around. 2. All security credentials besides development environment must be sources from individual Vault instances. Keys to those containers should exist only on the CI/CD box and accessible by a few people (the less the better). This is pretty self-explanatory, as anything besides dev may contain sensitive data and, at times, be public-facing. Because of that appropriate security must be present. TeamCity shines in this department with excellent secrets-management. 3. Every part of the build chain shall consume and produce artifacts. If it creates nothing, it likely shouldn't be its own build. This way if any issue shows up with any environment or version, all developer has to do it is grab appropriate artifacts to reproduce the issue locally. 4. Deployment builds should be directly tied to specific Git branches/tags. This enables much easier tracking of what caused an issue, including automated identifying and tagging the author (nothing like automated regression testing!).

      Speaking of deployments, I generally try to keep it simple but also with a close eye on the wallet. Because of that, I am more than happy with AWS or another cloud provider, but also constantly peeking at the loads and do we get the value of what we are paying for. Often enough the pattern of use is not constantly erratic, but rather has a firm baseline which could be migrated away from the cloud and into bare metal boxes. That is another part where this approach strongly triumphs over the common Docker and CircleCI setup, where you are very much tied in to use cloud providers and getting out is expensive. Here to embrace bare-metal hosting all you need is a help of some container-based self-hosting software, my personal preference is with Proxmox and LXC. Following that all you must write are ansible scripts to manage hardware of Proxmox, similar way as you do for Amazon EC2 (ansible supports both greatly) and you are good to go. One does not exclude another, quite the opposite, as they can live in great synergy and cut your costs dramatically (the heavier your base load, the bigger the savings) while providing production-grade resiliency.

      See more
      Kubernetes logo

      Kubernetes

      33.7K
      28.2K
      601
      Manage a cluster of Linux containers as a single system to accelerate Dev and simplify Ops
      33.7K
      28.2K
      + 1
      601
      PROS OF KUBERNETES
      • 152
        Leading docker container management solution
      • 121
        Simple and powerful
      • 96
        Open source
      • 73
        Backed by google
      • 56
        The right abstractions
      • 24
        Scale services
      • 17
        Replication controller
      • 9
        Permission managment
      • 6
        Simple
      • 5
        Supports autoscaling
      • 5
        Cheap
      • 3
        Reliable
      • 3
        No cloud platform lock-in
      • 3
        Self-healing
      • 3
        Open, powerful, stable
      • 3
        Scalable
      • 3
        Promotes modern/good infrascture practice
      • 2
        Cloud Agnostic
      • 2
        Backed by Red Hat
      • 2
        Custom and extensibility
      • 2
        Quick cloud setup
      • 2
        Captain of Container Ship
      • 2
        A self healing environment with rich metadata
      • 1
        Everything of CaaS
      • 1
        Easy setup
      • 1
        Expandable
      • 1
        Runs on azure
      • 1
        Sfg
      • 1
        Golang
      • 1
        Gke
      CONS OF KUBERNETES
      • 13
        Poor workflow for development
      • 11
        Steep learning curve
      • 5
        Orchestrates only infrastructure
      • 2
        High resource requirements for on-prem clusters

      related Kubernetes posts

      Conor Myhrvold
      Tech Brand Mgr, Office of CTO at Uber · | 38 upvotes · 3.7M views

      How Uber developed the open source, end-to-end distributed tracing Jaeger , now a CNCF project:

      Distributed tracing is quickly becoming a must-have component in the tools that organizations use to monitor their complex, microservice-based architectures. At Uber, our open source distributed tracing system Jaeger saw large-scale internal adoption throughout 2016, integrated into hundreds of microservices and now recording thousands of traces every second.

      Here is the story of how we got here, from investigating off-the-shelf solutions like Zipkin, to why we switched from pull to push architecture, and how distributed tracing will continue to evolve:

      https://eng.uber.com/distributed-tracing/

      (GitHub Pages : https://www.jaegertracing.io/, GitHub: https://github.com/jaegertracing/jaeger)

      Bindings/Operator: Python Java Node.js Go C++ Kubernetes JavaScript OpenShift C# Apache Spark

      See more
      Yshay Yaacobi

      Our first experience with .NET core was when we developed our OSS feature management platform - Tweek (https://github.com/soluto/tweek). We wanted to create a solution that is able to run anywhere (super important for OSS), has excellent performance characteristics and can fit in a multi-container architecture. We decided to implement our rule engine processor in F# , our main service was implemented in C# and other components were built using JavaScript / TypeScript and Go.

      Visual Studio Code worked really well for us as well, it worked well with all our polyglot services and the .Net core integration had great cross-platform developer experience (to be fair, F# was a bit trickier) - actually, each of our team members used a different OS (Ubuntu, macos, windows). Our production deployment ran for a time on Docker Swarm until we've decided to adopt Kubernetes with almost seamless migration process.

      After our positive experience of running .Net core workloads in containers and developing Tweek's .Net services on non-windows machines, C# had gained back some of its popularity (originally lost to Node.js), and other teams have been using it for developing microservices, k8s sidecars (like https://github.com/Soluto/airbag), cli tools, serverless functions and other projects...

      See more
      Docker Compose logo

      Docker Compose

      13.1K
      9.5K
      473
      Define and run multi-container applications with Docker
      13.1K
      9.5K
      + 1
      473
      PROS OF DOCKER COMPOSE
      • 119
        Multi-container descriptor
      • 108
        Fast development environment setup
      • 75
        Easy linking of containers
      • 65
        Simple yaml configuration
      • 58
        Easy setup
      • 15
        Yml or yaml format
      • 11
        Use Standard Docker API
      • 7
        Open source
      • 4
        Go from template to application in minutes
      • 4
        Can choose Discovery Backend
      • 2
        Kubernetes integration
      • 2
        Easy configuration
      • 2
        Scalable
      • 1
        Quick and easy
      CONS OF DOCKER COMPOSE
      • 7
        Tied to single machine
      • 4
        Still very volatile, changing syntax often

      related Docker Compose posts

      Simon Reymann
      Senior Fullstack Developer at QUANTUSflow Software GmbH · | 28 upvotes · 2.6M views

      Our whole DevOps stack consists of the following tools:

      • GitHub (incl. GitHub Pages/Markdown for Documentation, GettingStarted and HowTo's) for collaborative review and code management tool
      • Respectively Git as revision control system
      • SourceTree as Git GUI
      • Visual Studio Code as IDE
      • CircleCI for continuous integration (automatize development process)
      • Prettier / TSLint / ESLint as code linter
      • SonarQube as quality gate
      • Docker as container management (incl. Docker Compose for multi-container application management)
      • VirtualBox for operating system simulation tests
      • Kubernetes as cluster management for docker containers
      • Heroku for deploying in test environments
      • nginx as web server (preferably used as facade server in production environment)
      • SSLMate (using OpenSSL) for certificate management
      • Amazon EC2 (incl. Amazon S3) for deploying in stage (production-like) and production environments
      • PostgreSQL as preferred database system
      • Redis as preferred in-memory database/store (great for caching)

      The main reason we have chosen Kubernetes over Docker Swarm is related to the following artifacts:

      • Key features: Easy and flexible installation, Clear dashboard, Great scaling operations, Monitoring is an integral part, Great load balancing concepts, Monitors the condition and ensures compensation in the event of failure.
      • Applications: An application can be deployed using a combination of pods, deployments, and services (or micro-services).
      • Functionality: Kubernetes as a complex installation and setup process, but it not as limited as Docker Swarm.
      • Monitoring: It supports multiple versions of logging and monitoring when the services are deployed within the cluster (Elasticsearch/Kibana (ELK), Heapster/Grafana, Sysdig cloud integration).
      • Scalability: All-in-one framework for distributed systems.
      • Other Benefits: Kubernetes is backed by the Cloud Native Computing Foundation (CNCF), huge community among container orchestration tools, it is an open source and modular tool that works with any OS.
      See more

      Recently I have been working on an open source stack to help people consolidate their personal health data in a single database so that AI and analytics apps can be run against it to find personalized treatments. We chose to go with a #containerized approach leveraging Docker #containers with a local development environment setup with Docker Compose and nginx for container routing. For the production environment we chose to pull code from GitHub and build/push images using Jenkins and using Kubernetes to deploy to Amazon EC2.

      We also implemented a dashboard app to handle user authentication/authorization, as well as a custom SSO server that runs on Heroku which allows experts to easily visit more than one instance without having to login repeatedly. The #Backend was implemented using my favorite #Stack which consists of FeathersJS on top of Node.js and ExpressJS with PostgreSQL as the main database. The #Frontend was implemented using React, Redux.js, Semantic UI React and the FeathersJS client. Though testing was light on this project, we chose to use AVA as well as ESLint to keep the codebase clean and consistent.

      See more
      Helm logo

      Helm

      841
      571
      10
      The Kubernetes Package Manager
      841
      571
      + 1
      10
      PROS OF HELM
      • 4
        Infrastructure as code
      • 3
        Open source
      • 2
        Easy setup
      • 1
        Testa­bil­i­ty and re­pro­ducibil­i­ty
      CONS OF HELM
        Be the first to leave a con

        related Helm posts

        Emanuel Evans
        Senior Architect at Rainforest QA · | 13 upvotes · 578.1K views

        We recently moved our main applications from Heroku to Kubernetes . The 3 main driving factors behind the switch were scalability (database size limits), security (the inability to set up PostgreSQL instances in private networks), and costs (GCP is cheaper for raw computing resources).

        We prefer using managed services, so we are using Google Kubernetes Engine with Google Cloud SQL for PostgreSQL for our PostgreSQL databases and Google Cloud Memorystore for Redis . For our CI/CD pipeline, we are using CircleCI and Google Cloud Build to deploy applications managed with Helm . The new infrastructure is managed with Terraform .

        Read the blog post to go more in depth.

        See more
        Robert Zuber

        Our backend consists of two major pools of machines. One pool hosts the systems that run our site, manage jobs, and send notifications. These services are deployed within Docker containers orchestrated in Kubernetes. Due to Kubernetes’ ecosystem and toolchain, it was an obvious choice for our fairly statically-defined processes: the rate of change of job types or how many we may need in our internal stack is relatively low.

        The other pool of machines is for running our users’ jobs. Because we cannot dynamically predict demand, what types of jobs our users need to have run, nor the resources required for each of those jobs, we found that Nomad excelled over Kubernetes in this area.

        We’re also using Helm to make it easier to deploy new services into Kubernetes. We create a chart (i.e. package) for each service. This lets us easily roll back new software and gives us an audit trail of what was installed or upgraded.

        See more
        Spring Cloud logo

        Spring Cloud

        639
        580
        0
        Spring helps development teams everywhere build simple, portable,fast and flexible JVM-based systems and applications.
        639
        580
        + 1
        0
        PROS OF SPRING CLOUD
          Be the first to leave a pro
          CONS OF SPRING CLOUD
            Be the first to leave a con

            related Spring Cloud posts

            Spring-Boot Spring Cloud Elasticsearch MySQL Redis RabbitMQ Kafka MongoDB GitHub Linux IntelliJ IDEA

            See more