Alternatives to Metricbeat logo

Alternatives to Metricbeat

Prometheus, Telegraf, Filebeat, collectd, and Fluentd are the most popular alternatives and competitors to Metricbeat.
49
3

What is Metricbeat and what are its top alternatives?

Collect metrics from your systems and services. From CPU to memory, Redis to NGINX, and much more, It is a lightweight way to send system and service statistics.
Metricbeat is a tool in the Monitoring Tools category of a tech stack.

Top Alternatives to Metricbeat

  • Prometheus
    Prometheus

    Prometheus is a systems and service monitoring system. It collects metrics from configured targets at given intervals, evaluates rule expressions, displays the results, and can trigger alerts if some condition is observed to be true. ...

  • Telegraf
    Telegraf

    It is an agent for collecting, processing, aggregating, and writing metrics. Design goals are to have a minimal memory footprint with a plugin system so that developers in the community can easily add support for collecting metrics. ...

  • Filebeat
    Filebeat

    It helps you keep the simple things simple by offering a lightweight way to forward and centralize logs and files. ...

  • collectd
    collectd

    collectd gathers statistics about the system it is running on and stores this information. Those statistics can then be used to find current performance bottlenecks (i.e. performance analysis) and predict future system load (i.e. capacity planning). Or if you just want pretty graphs of your private server and are fed up with some homegrown solution you're at the right place, too. ...

  • Fluentd
    Fluentd

    Fluentd collects events from various data sources and writes them to files, RDBMS, NoSQL, IaaS, SaaS, Hadoop and so on. Fluentd helps you unify your logging infrastructure. ...

  • Logstash
    Logstash

    Logstash is a tool for managing events and logs. You can use it to collect logs, parse them, and store them for later use (like, for searching). If you store them in Elasticsearch, you can view and analyze them with Kibana. ...

  • Packetbeat
    Packetbeat

    Packetbeat agents sniff the traffic between your application processes, parse on the fly protocols like HTTP, MySQL, Postgresql or REDIS and correlate the messages into transactions. ...

  • New Relic
    New Relic

    The world’s best software and DevOps teams rely on New Relic to move faster, make better decisions and create best-in-class digital experiences. If you run software, you need to run New Relic. More than 50% of the Fortune 100 do too. ...

Metricbeat alternatives & related posts

Prometheus logo

Prometheus

4.3K
3.8K
239
An open-source service monitoring system and time series database, developed by SoundCloud
4.3K
3.8K
+ 1
239
PROS OF PROMETHEUS
  • 47
    Powerful easy to use monitoring
  • 38
    Flexible query language
  • 32
    Dimensional data model
  • 27
    Alerts
  • 23
    Active and responsive community
  • 22
    Extensive integrations
  • 19
    Easy to setup
  • 12
    Beautiful Model and Query language
  • 7
    Easy to extend
  • 6
    Nice
  • 3
    Written in Go
  • 2
    Good for experimentation
  • 1
    Easy for monitoring
CONS OF PROMETHEUS
  • 12
    Just for metrics
  • 6
    Bad UI
  • 6
    Needs monitoring to access metrics endpoints
  • 4
    Not easy to configure and use
  • 3
    Supports only active agents
  • 2
    Written in Go
  • 2
    TLS is quite difficult to understand
  • 2
    Requires multiple applications and tools
  • 1
    Single point of failure

related Prometheus posts

Matt Menzenski
Senior Software Engineering Manager at PayIt · | 16 upvotes · 1M views

Grafana and Prometheus together, running on Kubernetes , is a powerful combination. These tools are cloud-native and offer a large community and easy integrations. At PayIt we're using exporting Java application metrics using a Dropwizard metrics exporter, and our Node.js services now use the prom-client npm library to serve metrics.

See more
Conor Myhrvold
Tech Brand Mgr, Office of CTO at Uber · | 15 upvotes · 5M views

Why we spent several years building an open source, large-scale metrics alerting system, M3, built for Prometheus:

By late 2014, all services, infrastructure, and servers at Uber emitted metrics to a Graphite stack that stored them using the Whisper file format in a sharded Carbon cluster. We used Grafana for dashboarding and Nagios for alerting, issuing Graphite threshold checks via source-controlled scripts. While this worked for a while, expanding the Carbon cluster required a manual resharding process and, due to lack of replication, any single node’s disk failure caused permanent loss of its associated metrics. In short, this solution was not able to meet our needs as the company continued to grow.

To ensure the scalability of Uber’s metrics backend, we decided to build out a system that provided fault tolerant metrics ingestion, storage, and querying as a managed platform...

https://eng.uber.com/m3/

(GitHub : https://github.com/m3db/m3)

See more
Telegraf logo

Telegraf

280
318
16
The plugin-driven server agent for collecting & reporting metrics
280
318
+ 1
16
PROS OF TELEGRAF
  • 5
    One agent can work as multiple exporter with min hndlng
  • 5
    Cohesioned stack for monitoring
  • 2
    Open Source
  • 2
    Metrics
  • 1
    Supports custom plugins in any language
  • 1
    Many hundreds of plugins
CONS OF TELEGRAF
    Be the first to leave a con

    related Telegraf posts

    Filebeat logo

    Filebeat

    132
    253
    0
    A lightweight shipper for forwarding and centralizing log data
    132
    253
    + 1
    0
    PROS OF FILEBEAT
      Be the first to leave a pro
      CONS OF FILEBEAT
        Be the first to leave a con

        related Filebeat posts

        collectd logo

        collectd

        98
        156
        5
        System and applications metrics collector
        98
        156
        + 1
        5
        PROS OF COLLECTD
        • 2
          Open Source
        • 2
          Modular, plugins
        • 1
          KISS
        CONS OF COLLECTD
          Be the first to leave a con

          related collectd posts

          Łukasz Korecki
          CTO & Co-founder at EnjoyHQ · | 7 upvotes · 308K views

          We use collectd because of it's low footprint and great capabilities. We use it to monitor our Google Compute Engine machines. More interestingly we setup collectd as StatsD replacement - all our Clojure services push application-level metrics using our own metrics library and collectd pushes them to Stackdriver

          See more
          Fluentd logo

          Fluentd

          602
          689
          38
          Unified logging layer
          602
          689
          + 1
          38
          PROS OF FLUENTD
          • 11
            Open-source
          • 9
            Easy
          • 9
            Great for Kubernetes node container log forwarding
          • 9
            Lightweight
          CONS OF FLUENTD
            Be the first to leave a con

            related Fluentd posts

            Logstash logo

            Logstash

            11.4K
            8.7K
            103
            Collect, Parse, & Enrich Data
            11.4K
            8.7K
            + 1
            103
            PROS OF LOGSTASH
            • 69
              Free
            • 18
              Easy but powerful filtering
            • 12
              Scalable
            • 2
              Kibana provides machine learning based analytics to log
            • 1
              Great to meet GDPR goals
            • 1
              Well Documented
            CONS OF LOGSTASH
            • 4
              Memory-intensive
            • 1
              Documentation difficult to use

            related Logstash posts

            Tymoteusz Paul
            Devops guy at X20X Development LTD · | 23 upvotes · 9.7M views

            Often enough I have to explain my way of going about setting up a CI/CD pipeline with multiple deployment platforms. Since I am a bit tired of yapping the same every single time, I've decided to write it up and share with the world this way, and send people to read it instead ;). I will explain it on "live-example" of how the Rome got built, basing that current methodology exists only of readme.md and wishes of good luck (as it usually is ;)).

            It always starts with an app, whatever it may be and reading the readmes available while Vagrant and VirtualBox is installing and updating. Following that is the first hurdle to go over - convert all the instruction/scripts into Ansible playbook(s), and only stopping when doing a clear vagrant up or vagrant reload we will have a fully working environment. As our Vagrant environment is now functional, it's time to break it! This is the moment to look for how things can be done better (too rigid/too lose versioning? Sloppy environment setup?) and replace them with the right way to do stuff, one that won't bite us in the backside. This is the point, and the best opportunity, to upcycle the existing way of doing dev environment to produce a proper, production-grade product.

            I should probably digress here for a moment and explain why. I firmly believe that the way you deploy production is the same way you should deploy develop, shy of few debugging-friendly setting. This way you avoid the discrepancy between how production work vs how development works, which almost always causes major pains in the back of the neck, and with use of proper tools should mean no more work for the developers. That's why we start with Vagrant as developer boxes should be as easy as vagrant up, but the meat of our product lies in Ansible which will do meat of the work and can be applied to almost anything: AWS, bare metal, docker, LXC, in open net, behind vpn - you name it.

            We must also give proper consideration to monitoring and logging hoovering at this point. My generic answer here is to grab Elasticsearch, Kibana, and Logstash. While for different use cases there may be better solutions, this one is well battle-tested, performs reasonably and is very easy to scale both vertically (within some limits) and horizontally. Logstash rules are easy to write and are well supported in maintenance through Ansible, which as I've mentioned earlier, are at the very core of things, and creating triggers/reports and alerts based on Elastic and Kibana is generally a breeze, including some quite complex aggregations.

            If we are happy with the state of the Ansible it's time to move on and put all those roles and playbooks to work. Namely, we need something to manage our CI/CD pipelines. For me, the choice is obvious: TeamCity. It's modern, robust and unlike most of the light-weight alternatives, it's transparent. What I mean by that is that it doesn't tell you how to do things, doesn't limit your ways to deploy, or test, or package for that matter. Instead, it provides a developer-friendly and rich playground for your pipelines. You can do most the same with Jenkins, but it has a quite dated look and feel to it, while also missing some key functionality that must be brought in via plugins (like quality REST API which comes built-in with TeamCity). It also comes with all the common-handy plugins like Slack or Apache Maven integration.

            The exact flow between CI and CD varies too greatly from one application to another to describe, so I will outline a few rules that guide me in it: 1. Make build steps as small as possible. This way when something breaks, we know exactly where, without needing to dig and root around. 2. All security credentials besides development environment must be sources from individual Vault instances. Keys to those containers should exist only on the CI/CD box and accessible by a few people (the less the better). This is pretty self-explanatory, as anything besides dev may contain sensitive data and, at times, be public-facing. Because of that appropriate security must be present. TeamCity shines in this department with excellent secrets-management. 3. Every part of the build chain shall consume and produce artifacts. If it creates nothing, it likely shouldn't be its own build. This way if any issue shows up with any environment or version, all developer has to do it is grab appropriate artifacts to reproduce the issue locally. 4. Deployment builds should be directly tied to specific Git branches/tags. This enables much easier tracking of what caused an issue, including automated identifying and tagging the author (nothing like automated regression testing!).

            Speaking of deployments, I generally try to keep it simple but also with a close eye on the wallet. Because of that, I am more than happy with AWS or another cloud provider, but also constantly peeking at the loads and do we get the value of what we are paying for. Often enough the pattern of use is not constantly erratic, but rather has a firm baseline which could be migrated away from the cloud and into bare metal boxes. That is another part where this approach strongly triumphs over the common Docker and CircleCI setup, where you are very much tied in to use cloud providers and getting out is expensive. Here to embrace bare-metal hosting all you need is a help of some container-based self-hosting software, my personal preference is with Proxmox and LXC. Following that all you must write are ansible scripts to manage hardware of Proxmox, similar way as you do for Amazon EC2 (ansible supports both greatly) and you are good to go. One does not exclude another, quite the opposite, as they can live in great synergy and cut your costs dramatically (the heavier your base load, the bigger the savings) while providing production-grade resiliency.

            See more

            Hi everyone. I'm trying to create my personal syslog monitoring.

            1. To get the logs, I have uncertainty to choose the way: 1.1 Use Logstash like a TCP server. 1.2 Implement a Go TCP server.

            2. To store and plot data. 2.1 Use Elasticsearch tools. 2.2 Use InfluxDB and Grafana.

            I would like to know... Which is a cheaper and scalable solution?

            Or even if there is a better way to do it.

            See more
            Packetbeat logo

            Packetbeat

            15
            44
            4
            Open Source application monitoring & packet tracing system
            15
            44
            + 1
            4
            PROS OF PACKETBEAT
            • 2
              Easy setup
            • 2
              Works well with ELK stack
            CONS OF PACKETBEAT
              Be the first to leave a con

              related Packetbeat posts

              New Relic logo

              New Relic

              20.8K
              8.6K
              1.9K
              New Relic is the industry’s largest and most comprehensive cloud-based observability platform.
              20.8K
              8.6K
              + 1
              1.9K
              PROS OF NEW RELIC
              • 415
                Easy setup
              • 344
                Really powerful
              • 245
                Awesome visualization
              • 194
                Ease of use
              • 151
                Great ui
              • 106
                Free tier
              • 80
                Great tool for insights
              • 66
                Heroku Integration
              • 55
                Market leader
              • 49
                Peace of mind
              • 21
                Push notifications
              • 20
                Email notifications
              • 17
                Heroku Add-on
              • 16
                Error Detection and Alerting
              • 13
                Multiple language support
              • 11
                SQL Analysis
              • 11
                Server Resources Monitoring
              • 9
                Transaction Tracing
              • 8
                Apdex Scores
              • 8
                Azure Add-on
              • 7
                Analysis of CPU, Disk, Memory, and Network
              • 7
                Detailed reports
              • 6
                Performance of External Services
              • 6
                Error Analysis
              • 6
                Application Availability Monitoring and Alerting
              • 6
                Application Response Times
              • 5
                Most Time Consuming Transactions
              • 5
                JVM Performance Analyzer (Java)
              • 4
                Browser Transaction Tracing
              • 4
                Top Database Operations
              • 4
                Easy to use
              • 3
                Application Map
              • 3
                Weekly Performance Email
              • 3
                Pagoda Box integration
              • 3
                Custom Dashboards
              • 2
                Easy to setup
              • 2
                Background Jobs Transaction Analysis
              • 2
                App Speed Index
              • 1
                Super Expensive
              • 1
                Team Collaboration Tools
              • 1
                Metric Data Retention
              • 1
                Metric Data Resolution
              • 1
                Worst Transactions by User Dissatisfaction
              • 1
                Real User Monitoring Overview
              • 1
                Real User Monitoring Analysis and Breakdown
              • 1
                Time Comparisons
              • 1
                Access to Performance Data API
              • 1
                Incident Detection and Alerting
              • 1
                Best of the best, what more can you ask for
              • 1
                Best monitoring on the market
              • 1
                Rails integration
              • 1
                Free
              • 0
                Proce
              • 0
                Price
              • 0
                Exceptions
              • 0
                Cost
              CONS OF NEW RELIC
              • 20
                Pricing model doesn't suit microservices
              • 10
                UI isn't great
              • 7
                Expensive
              • 7
                Visualizations aren't very helpful
              • 5
                Hard to understand why things in your app are breaking

              related New Relic posts

              Farzeem Diamond Jiwani
              Software Engineer at IVP · | 8 upvotes · 1.5M views

              Hey there! We are looking at Datadog, Dynatrace, AppDynamics, and New Relic as options for our web application monitoring.

              Current Environment: .NET Core Web app hosted on Microsoft IIS

              Future Environment: Web app will be hosted on Microsoft Azure

              Tech Stacks: IIS, RabbitMQ, Redis, Microsoft SQL Server

              Requirement: Infra Monitoring, APM, Real - User Monitoring (User activity monitoring i.e., time spent on a page, most active page, etc.), Service Tracing, Root Cause Analysis, and Centralized Log Management.

              Please advise on the above. Thanks!

              See more
              Shared insights
              on
              New RelicNew RelicKibanaKibana

              I need to choose a monitoring tool for my project, but currently, my application doesn't have much load or many users. My application is not generating GBs of data. We don't want to send the user information to New Relic because it's a 3rd party tool. And we can deploy Kibana locally on our server. What should I use, Kibana or New Relic?

              See more