Alternatives to Fluentd logo

Alternatives to Fluentd

Logstash, Splunk, collectd, Filebeat, and Elasticsearch are the most popular alternatives and competitors to Fluentd.
598
688
+ 1
37

What is Fluentd and what are its top alternatives?

Fluentd collects events from various data sources and writes them to files, RDBMS, NoSQL, IaaS, SaaS, Hadoop and so on. Fluentd helps you unify your logging infrastructure.
Fluentd is a tool in the Log Management category of a tech stack.
Fluentd is an open source tool with 12.6K GitHub stars and 1.3K GitHub forks. Here’s a link to Fluentd's open source repository on GitHub

Top Alternatives to Fluentd

  • Logstash
    Logstash

    Logstash is a tool for managing events and logs. You can use it to collect logs, parse them, and store them for later use (like, for searching). If you store them in Elasticsearch, you can view and analyze them with Kibana. ...

  • Splunk
    Splunk

    It provides the leading platform for Operational Intelligence. Customers use it to search, monitor, analyze and visualize machine data. ...

  • collectd
    collectd

    collectd gathers statistics about the system it is running on and stores this information. Those statistics can then be used to find current performance bottlenecks (i.e. performance analysis) and predict future system load (i.e. capacity planning). Or if you just want pretty graphs of your private server and are fed up with some homegrown solution you're at the right place, too. ...

  • Filebeat
    Filebeat

    It helps you keep the simple things simple by offering a lightweight way to forward and centralize logs and files. ...

  • Elasticsearch
    Elasticsearch

    Elasticsearch is a distributed, RESTful search and analytics engine capable of storing data and searching it in near real time. Elasticsearch, Kibana, Beats and Logstash are the Elastic Stack (sometimes called the ELK Stack). ...

  • Prometheus
    Prometheus

    Prometheus is a systems and service monitoring system. It collects metrics from configured targets at given intervals, evaluates rule expressions, displays the results, and can trigger alerts if some condition is observed to be true. ...

  • Kafka
    Kafka

    Kafka is a distributed, partitioned, replicated commit log service. It provides the functionality of a messaging system, but with a unique design. ...

  • ELK
    ELK

    It is the acronym for three open source projects: Elasticsearch, Logstash, and Kibana. Elasticsearch is a search and analytics engine. Logstash is a server‑side data processing pipeline that ingests data from multiple sources simultaneously, transforms it, and then sends it to a "stash" like Elasticsearch. Kibana lets users visualize data with charts and graphs in Elasticsearch. ...

Fluentd alternatives & related posts

Logstash logo

Logstash

11.2K
8.6K
103
Collect, Parse, & Enrich Data
11.2K
8.6K
+ 1
103
PROS OF LOGSTASH
  • 69
    Free
  • 18
    Easy but powerful filtering
  • 12
    Scalable
  • 2
    Kibana provides machine learning based analytics to log
  • 1
    Great to meet GDPR goals
  • 1
    Well Documented
CONS OF LOGSTASH
  • 4
    Memory-intensive
  • 1
    Documentation difficult to use

related Logstash posts

Tymoteusz Paul
Devops guy at X20X Development LTD · | 23 upvotes · 8.3M views

Often enough I have to explain my way of going about setting up a CI/CD pipeline with multiple deployment platforms. Since I am a bit tired of yapping the same every single time, I've decided to write it up and share with the world this way, and send people to read it instead ;). I will explain it on "live-example" of how the Rome got built, basing that current methodology exists only of readme.md and wishes of good luck (as it usually is ;)).

It always starts with an app, whatever it may be and reading the readmes available while Vagrant and VirtualBox is installing and updating. Following that is the first hurdle to go over - convert all the instruction/scripts into Ansible playbook(s), and only stopping when doing a clear vagrant up or vagrant reload we will have a fully working environment. As our Vagrant environment is now functional, it's time to break it! This is the moment to look for how things can be done better (too rigid/too lose versioning? Sloppy environment setup?) and replace them with the right way to do stuff, one that won't bite us in the backside. This is the point, and the best opportunity, to upcycle the existing way of doing dev environment to produce a proper, production-grade product.

I should probably digress here for a moment and explain why. I firmly believe that the way you deploy production is the same way you should deploy develop, shy of few debugging-friendly setting. This way you avoid the discrepancy between how production work vs how development works, which almost always causes major pains in the back of the neck, and with use of proper tools should mean no more work for the developers. That's why we start with Vagrant as developer boxes should be as easy as vagrant up, but the meat of our product lies in Ansible which will do meat of the work and can be applied to almost anything: AWS, bare metal, docker, LXC, in open net, behind vpn - you name it.

We must also give proper consideration to monitoring and logging hoovering at this point. My generic answer here is to grab Elasticsearch, Kibana, and Logstash. While for different use cases there may be better solutions, this one is well battle-tested, performs reasonably and is very easy to scale both vertically (within some limits) and horizontally. Logstash rules are easy to write and are well supported in maintenance through Ansible, which as I've mentioned earlier, are at the very core of things, and creating triggers/reports and alerts based on Elastic and Kibana is generally a breeze, including some quite complex aggregations.

If we are happy with the state of the Ansible it's time to move on and put all those roles and playbooks to work. Namely, we need something to manage our CI/CD pipelines. For me, the choice is obvious: TeamCity. It's modern, robust and unlike most of the light-weight alternatives, it's transparent. What I mean by that is that it doesn't tell you how to do things, doesn't limit your ways to deploy, or test, or package for that matter. Instead, it provides a developer-friendly and rich playground for your pipelines. You can do most the same with Jenkins, but it has a quite dated look and feel to it, while also missing some key functionality that must be brought in via plugins (like quality REST API which comes built-in with TeamCity). It also comes with all the common-handy plugins like Slack or Apache Maven integration.

The exact flow between CI and CD varies too greatly from one application to another to describe, so I will outline a few rules that guide me in it: 1. Make build steps as small as possible. This way when something breaks, we know exactly where, without needing to dig and root around. 2. All security credentials besides development environment must be sources from individual Vault instances. Keys to those containers should exist only on the CI/CD box and accessible by a few people (the less the better). This is pretty self-explanatory, as anything besides dev may contain sensitive data and, at times, be public-facing. Because of that appropriate security must be present. TeamCity shines in this department with excellent secrets-management. 3. Every part of the build chain shall consume and produce artifacts. If it creates nothing, it likely shouldn't be its own build. This way if any issue shows up with any environment or version, all developer has to do it is grab appropriate artifacts to reproduce the issue locally. 4. Deployment builds should be directly tied to specific Git branches/tags. This enables much easier tracking of what caused an issue, including automated identifying and tagging the author (nothing like automated regression testing!).

Speaking of deployments, I generally try to keep it simple but also with a close eye on the wallet. Because of that, I am more than happy with AWS or another cloud provider, but also constantly peeking at the loads and do we get the value of what we are paying for. Often enough the pattern of use is not constantly erratic, but rather has a firm baseline which could be migrated away from the cloud and into bare metal boxes. That is another part where this approach strongly triumphs over the common Docker and CircleCI setup, where you are very much tied in to use cloud providers and getting out is expensive. Here to embrace bare-metal hosting all you need is a help of some container-based self-hosting software, my personal preference is with Proxmox and LXC. Following that all you must write are ansible scripts to manage hardware of Proxmox, similar way as you do for Amazon EC2 (ansible supports both greatly) and you are good to go. One does not exclude another, quite the opposite, as they can live in great synergy and cut your costs dramatically (the heavier your base load, the bigger the savings) while providing production-grade resiliency.

See more

Hi everyone. I'm trying to create my personal syslog monitoring.

  1. To get the logs, I have uncertainty to choose the way: 1.1 Use Logstash like a TCP server. 1.2 Implement a Go TCP server.

  2. To store and plot data. 2.1 Use Elasticsearch tools. 2.2 Use InfluxDB and Grafana.

I would like to know... Which is a cheaper and scalable solution?

Or even if there is a better way to do it.

See more
Splunk logo

Splunk

599
1K
20
Search, monitor, analyze and visualize machine data
599
1K
+ 1
20
PROS OF SPLUNK
  • 3
    API for searching logs, running reports
  • 3
    Alert system based on custom query results
  • 2
    Dashboarding on any log contents
  • 2
    Custom log parsing as well as automatic parsing
  • 2
    Ability to style search results into reports
  • 2
    Query engine supports joining, aggregation, stats, etc
  • 2
    Splunk language supports string, date manip, math, etc
  • 2
    Rich GUI for searching live logs
  • 1
    Query any log as key-value pairs
  • 1
    Granular scheduling and time window support
CONS OF SPLUNK
  • 1
    Splunk query language rich so lots to learn

related Splunk posts

Shared insights
on
SplunkSplunkDjangoDjango

I am designing a Django application for my organization which will be used as an internal tool. The infra team said that I will not be having SSH access to the production server and I will have to log all my backend application messages to Splunk. I have no knowledge of Splunk so the following are the approaches I am considering: Approach 1: Create an hourly cron job that uploads the server log file to some Splunk storage for later analysis. - Is this possible? Approach 2: Is it possible just to stream the logs to some splunk endpoint? (If yes, I feel network usage and communication overhead will be a pain-point for my application)

Is there any better or standard approach? Thanks in advance.

See more
Shared insights
on
KibanaKibanaSplunkSplunkGrafanaGrafana

I use Kibana because it ships with the ELK stack. I don't find it as powerful as Splunk however it is light years above grepping through log files. We previously used Grafana but found it to be annoying to maintain a separate tool outside of the ELK stack. We were able to get everything we needed from Kibana.

See more
collectd logo

collectd

98
156
5
System and applications metrics collector
98
156
+ 1
5
PROS OF COLLECTD
  • 2
    Open Source
  • 2
    Modular, plugins
  • 1
    KISS
CONS OF COLLECTD
    Be the first to leave a con

    related collectd posts

    Łukasz Korecki
    CTO & Co-founder at EnjoyHQ · | 7 upvotes · 305.5K views

    We use collectd because of it's low footprint and great capabilities. We use it to monitor our Google Compute Engine machines. More interestingly we setup collectd as StatsD replacement - all our Clojure services push application-level metrics using our own metrics library and collectd pushes them to Stackdriver

    See more
    Filebeat logo

    Filebeat

    130
    253
    0
    A lightweight shipper for forwarding and centralizing log data
    130
    253
    + 1
    0
    PROS OF FILEBEAT
      Be the first to leave a pro
      CONS OF FILEBEAT
        Be the first to leave a con

        related Filebeat posts

        Elasticsearch logo

        Elasticsearch

        34.1K
        26.6K
        1.6K
        Open Source, Distributed, RESTful Search Engine
        34.1K
        26.6K
        + 1
        1.6K
        PROS OF ELASTICSEARCH
        • 328
          Powerful api
        • 315
          Great search engine
        • 231
          Open source
        • 214
          Restful
        • 200
          Near real-time search
        • 98
          Free
        • 85
          Search everything
        • 54
          Easy to get started
        • 45
          Analytics
        • 26
          Distributed
        • 6
          Fast search
        • 5
          More than a search engine
        • 4
          Great docs
        • 4
          Awesome, great tool
        • 3
          Highly Available
        • 3
          Easy to scale
        • 2
          Potato
        • 2
          Document Store
        • 2
          Great customer support
        • 2
          Intuitive API
        • 2
          Nosql DB
        • 2
          Great piece of software
        • 2
          Reliable
        • 2
          Fast
        • 2
          Easy setup
        • 1
          Open
        • 1
          Easy to get hot data
        • 1
          Github
        • 1
          Elaticsearch
        • 1
          Actively developing
        • 1
          Responsive maintainers on GitHub
        • 1
          Ecosystem
        • 1
          Not stable
        • 1
          Scalability
        • 0
          Community
        CONS OF ELASTICSEARCH
        • 7
          Resource hungry
        • 6
          Diffecult to get started
        • 5
          Expensive
        • 4
          Hard to keep stable at large scale

        related Elasticsearch posts

        Tim Abbott

        We've been using PostgreSQL since the very early days of Zulip, but we actually didn't use it from the beginning. Zulip started out as a MySQL project back in 2012, because we'd heard it was a good choice for a startup with a wide community. However, we found that even though we were using the Django ORM for most of our database access, we spent a lot of time fighting with MySQL. Issues ranged from bad collation defaults, to bad query plans which required a lot of manual query tweaks.

        We ended up getting so frustrated that we tried out PostgresQL, and the results were fantastic. We didn't have to do any real customization (just some tuning settings for how big a server we had), and all of our most important queries were faster out of the box. As a result, we were able to delete a bunch of custom queries escaping the ORM that we'd written to make the MySQL query planner happy (because postgres just did the right thing automatically).

        And then after that, we've just gotten a ton of value out of postgres. We use its excellent built-in full-text search, which has helped us avoid needing to bring in a tool like Elasticsearch, and we've really enjoyed features like its partial indexes, which saved us a lot of work adding unnecessary extra tables to get good performance for things like our "unread messages" and "starred messages" indexes.

        I can't recommend it highly enough.

        See more
        Tymoteusz Paul
        Devops guy at X20X Development LTD · | 23 upvotes · 8.3M views

        Often enough I have to explain my way of going about setting up a CI/CD pipeline with multiple deployment platforms. Since I am a bit tired of yapping the same every single time, I've decided to write it up and share with the world this way, and send people to read it instead ;). I will explain it on "live-example" of how the Rome got built, basing that current methodology exists only of readme.md and wishes of good luck (as it usually is ;)).

        It always starts with an app, whatever it may be and reading the readmes available while Vagrant and VirtualBox is installing and updating. Following that is the first hurdle to go over - convert all the instruction/scripts into Ansible playbook(s), and only stopping when doing a clear vagrant up or vagrant reload we will have a fully working environment. As our Vagrant environment is now functional, it's time to break it! This is the moment to look for how things can be done better (too rigid/too lose versioning? Sloppy environment setup?) and replace them with the right way to do stuff, one that won't bite us in the backside. This is the point, and the best opportunity, to upcycle the existing way of doing dev environment to produce a proper, production-grade product.

        I should probably digress here for a moment and explain why. I firmly believe that the way you deploy production is the same way you should deploy develop, shy of few debugging-friendly setting. This way you avoid the discrepancy between how production work vs how development works, which almost always causes major pains in the back of the neck, and with use of proper tools should mean no more work for the developers. That's why we start with Vagrant as developer boxes should be as easy as vagrant up, but the meat of our product lies in Ansible which will do meat of the work and can be applied to almost anything: AWS, bare metal, docker, LXC, in open net, behind vpn - you name it.

        We must also give proper consideration to monitoring and logging hoovering at this point. My generic answer here is to grab Elasticsearch, Kibana, and Logstash. While for different use cases there may be better solutions, this one is well battle-tested, performs reasonably and is very easy to scale both vertically (within some limits) and horizontally. Logstash rules are easy to write and are well supported in maintenance through Ansible, which as I've mentioned earlier, are at the very core of things, and creating triggers/reports and alerts based on Elastic and Kibana is generally a breeze, including some quite complex aggregations.

        If we are happy with the state of the Ansible it's time to move on and put all those roles and playbooks to work. Namely, we need something to manage our CI/CD pipelines. For me, the choice is obvious: TeamCity. It's modern, robust and unlike most of the light-weight alternatives, it's transparent. What I mean by that is that it doesn't tell you how to do things, doesn't limit your ways to deploy, or test, or package for that matter. Instead, it provides a developer-friendly and rich playground for your pipelines. You can do most the same with Jenkins, but it has a quite dated look and feel to it, while also missing some key functionality that must be brought in via plugins (like quality REST API which comes built-in with TeamCity). It also comes with all the common-handy plugins like Slack or Apache Maven integration.

        The exact flow between CI and CD varies too greatly from one application to another to describe, so I will outline a few rules that guide me in it: 1. Make build steps as small as possible. This way when something breaks, we know exactly where, without needing to dig and root around. 2. All security credentials besides development environment must be sources from individual Vault instances. Keys to those containers should exist only on the CI/CD box and accessible by a few people (the less the better). This is pretty self-explanatory, as anything besides dev may contain sensitive data and, at times, be public-facing. Because of that appropriate security must be present. TeamCity shines in this department with excellent secrets-management. 3. Every part of the build chain shall consume and produce artifacts. If it creates nothing, it likely shouldn't be its own build. This way if any issue shows up with any environment or version, all developer has to do it is grab appropriate artifacts to reproduce the issue locally. 4. Deployment builds should be directly tied to specific Git branches/tags. This enables much easier tracking of what caused an issue, including automated identifying and tagging the author (nothing like automated regression testing!).

        Speaking of deployments, I generally try to keep it simple but also with a close eye on the wallet. Because of that, I am more than happy with AWS or another cloud provider, but also constantly peeking at the loads and do we get the value of what we are paying for. Often enough the pattern of use is not constantly erratic, but rather has a firm baseline which could be migrated away from the cloud and into bare metal boxes. That is another part where this approach strongly triumphs over the common Docker and CircleCI setup, where you are very much tied in to use cloud providers and getting out is expensive. Here to embrace bare-metal hosting all you need is a help of some container-based self-hosting software, my personal preference is with Proxmox and LXC. Following that all you must write are ansible scripts to manage hardware of Proxmox, similar way as you do for Amazon EC2 (ansible supports both greatly) and you are good to go. One does not exclude another, quite the opposite, as they can live in great synergy and cut your costs dramatically (the heavier your base load, the bigger the savings) while providing production-grade resiliency.

        See more
        Prometheus logo

        Prometheus

        4.2K
        3.8K
        239
        An open-source service monitoring system and time series database, developed by SoundCloud
        4.2K
        3.8K
        + 1
        239
        PROS OF PROMETHEUS
        • 47
          Powerful easy to use monitoring
        • 38
          Flexible query language
        • 32
          Dimensional data model
        • 27
          Alerts
        • 23
          Active and responsive community
        • 22
          Extensive integrations
        • 19
          Easy to setup
        • 12
          Beautiful Model and Query language
        • 7
          Easy to extend
        • 6
          Nice
        • 3
          Written in Go
        • 2
          Good for experimentation
        • 1
          Easy for monitoring
        CONS OF PROMETHEUS
        • 12
          Just for metrics
        • 6
          Bad UI
        • 6
          Needs monitoring to access metrics endpoints
        • 4
          Not easy to configure and use
        • 3
          Supports only active agents
        • 2
          Written in Go
        • 2
          TLS is quite difficult to understand
        • 2
          Requires multiple applications and tools
        • 1
          Single point of failure

        related Prometheus posts

        Matt Menzenski
        Senior Software Engineering Manager at PayIt · | 16 upvotes · 995.7K views

        Grafana and Prometheus together, running on Kubernetes , is a powerful combination. These tools are cloud-native and offer a large community and easy integrations. At PayIt we're using exporting Java application metrics using a Dropwizard metrics exporter, and our Node.js services now use the prom-client npm library to serve metrics.

        See more
        Conor Myhrvold
        Tech Brand Mgr, Office of CTO at Uber · | 15 upvotes · 4.5M views

        Why we spent several years building an open source, large-scale metrics alerting system, M3, built for Prometheus:

        By late 2014, all services, infrastructure, and servers at Uber emitted metrics to a Graphite stack that stored them using the Whisper file format in a sharded Carbon cluster. We used Grafana for dashboarding and Nagios for alerting, issuing Graphite threshold checks via source-controlled scripts. While this worked for a while, expanding the Carbon cluster required a manual resharding process and, due to lack of replication, any single node’s disk failure caused permanent loss of its associated metrics. In short, this solution was not able to meet our needs as the company continued to grow.

        To ensure the scalability of Uber’s metrics backend, we decided to build out a system that provided fault tolerant metrics ingestion, storage, and querying as a managed platform...

        https://eng.uber.com/m3/

        (GitHub : https://github.com/m3db/m3)

        See more
        Kafka logo

        Kafka

        23.1K
        21.7K
        607
        Distributed, fault tolerant, high throughput pub-sub messaging system
        23.1K
        21.7K
        + 1
        607
        PROS OF KAFKA
        • 126
          High-throughput
        • 119
          Distributed
        • 92
          Scalable
        • 86
          High-Performance
        • 66
          Durable
        • 38
          Publish-Subscribe
        • 19
          Simple-to-use
        • 18
          Open source
        • 12
          Written in Scala and java. Runs on JVM
        • 9
          Message broker + Streaming system
        • 4
          KSQL
        • 4
          Avro schema integration
        • 4
          Robust
        • 3
          Suport Multiple clients
        • 2
          Extremely good parallelism constructs
        • 2
          Partioned, replayable log
        • 1
          Simple publisher / multi-subscriber model
        • 1
          Fun
        • 1
          Flexible
        CONS OF KAFKA
        • 32
          Non-Java clients are second-class citizens
        • 29
          Needs Zookeeper
        • 9
          Operational difficulties
        • 5
          Terrible Packaging

        related Kafka posts

        Nick Rockwell
        SVP, Engineering at Fastly · | 46 upvotes · 3.4M views

        When I joined NYT there was already broad dissatisfaction with the LAMP (Linux Apache HTTP Server MySQL PHP) Stack and the front end framework, in particular. So, I wasn't passing judgment on it. I mean, LAMP's fine, you can do good work in LAMP. It's a little dated at this point, but it's not ... I didn't want to rip it out for its own sake, but everyone else was like, "We don't like this, it's really inflexible." And I remember from being outside the company when that was called MIT FIVE when it had launched. And been observing it from the outside, and I was like, you guys took so long to do that and you did it so carefully, and yet you're not happy with your decisions. Why is that? That was more the impetus. If we're going to do this again, how are we going to do it in a way that we're gonna get a better result?

        So we're moving quickly away from LAMP, I would say. So, right now, the new front end is React based and using Apollo. And we've been in a long, protracted, gradual rollout of the core experiences.

        React is now talking to GraphQL as a primary API. There's a Node.js back end, to the front end, which is mainly for server-side rendering, as well.

        Behind there, the main repository for the GraphQL server is a big table repository, that we call Bodega because it's a convenience store. And that reads off of a Kafka pipeline.

        See more
        Ashish Singh
        Tech Lead, Big Data Platform at Pinterest · | 38 upvotes · 3M views

        To provide employees with the critical need of interactive querying, we’ve worked with Presto, an open-source distributed SQL query engine, over the years. Operating Presto at Pinterest’s scale has involved resolving quite a few challenges like, supporting deeply nested and huge thrift schemas, slow/ bad worker detection and remediation, auto-scaling cluster, graceful cluster shutdown and impersonation support for ldap authenticator.

        Our infrastructure is built on top of Amazon EC2 and we leverage Amazon S3 for storing our data. This separates compute and storage layers, and allows multiple compute clusters to share the S3 data.

        We have hundreds of petabytes of data and tens of thousands of Apache Hive tables. Our Presto clusters are comprised of a fleet of 450 r4.8xl EC2 instances. Presto clusters together have over 100 TBs of memory and 14K vcpu cores. Within Pinterest, we have close to more than 1,000 monthly active users (out of total 1,600+ Pinterest employees) using Presto, who run about 400K queries on these clusters per month.

        Each query submitted to Presto cluster is logged to a Kafka topic via Singer. Singer is a logging agent built at Pinterest and we talked about it in a previous post. Each query is logged when it is submitted and when it finishes. When a Presto cluster crashes, we will have query submitted events without corresponding query finished events. These events enable us to capture the effect of cluster crashes over time.

        Each Presto cluster at Pinterest has workers on a mix of dedicated AWS EC2 instances and Kubernetes pods. Kubernetes platform provides us with the capability to add and remove workers from a Presto cluster very quickly. The best-case latency on bringing up a new worker on Kubernetes is less than a minute. However, when the Kubernetes cluster itself is out of resources and needs to scale up, it can take up to ten minutes. Some other advantages of deploying on Kubernetes platform is that our Presto deployment becomes agnostic of cloud vendor, instance types, OS, etc.

        #BigData #AWS #DataScience #DataEngineering

        See more
        ELK logo

        ELK

        843
        926
        21
        The acronym for three open source projects: Elasticsearch, Logstash, and Kibana
        843
        926
        + 1
        21
        PROS OF ELK
        • 13
          Open source
        • 3
          Can run locally
        • 3
          Good for startups with monetary limitations
        • 1
          External Network Goes Down You Aren't Without Logging
        • 1
          Easy to setup
        • 0
          Json log supprt
        • 0
          Live logging
        CONS OF ELK
        • 5
          Elastic Search is a resource hog
        • 3
          Logstash configuration is a pain
        • 1
          Bad for startups with personal limitations

        related ELK posts

        Wallace Alves
        Cyber Security Analyst · | 2 upvotes · 859.9K views

        Docker Docker Compose Portainer ELK Elasticsearch Kibana Logstash nginx

        See more