What is Monit and what are its top alternatives?
Monit is a popular open-source tool used for proactive monitoring and automatic management of Unix systems. It can monitor various aspects of a system such as CPU usage, memory usage, file systems, and processes. Monit can also perform automatic actions like restarting a service or sending alerts based on predefined conditions. However, one of its limitations is the lack of complex monitoring capabilities compared to enterprise-grade monitoring tools.
- Prometheus: Prometheus is a powerful open-source monitoring and alerting toolkit designed for reliability, scalability, and extensibility. It scrapes metrics from monitored targets, stores them in a time series database, and allows querying of these metrics to trigger alerts based on predefined conditions. One key feature of Prometheus is its robust querying language, PromQL, which enables complex monitoring scenarios. However, setting up Prometheus can be complex compared to Monit.
- Nagios: Nagios is a widely-used open-source monitoring tool that provides comprehensive monitoring and alerting solutions. It can monitor network services, host resources, and environmental factors. Nagios supports both agent-based and agentless monitoring, making it versatile for various monitoring requirements. However, Nagios can be challenging to configure and maintain compared to Monit.
- Zabbix: Zabbix is an enterprise-class open-source monitoring solution known for its scalability and flexibility. It can monitor networks, servers, virtual machines, and cloud services. Zabbix offers advanced features like distributed monitoring, auto-discovery, and real-time monitoring of tens of thousands of devices. One drawback of Zabbix is its steep learning curve compared to Monit.
- Icinga: Icinga is an open-source monitoring tool that forked from Nagios and enhanced its features. It offers a user-friendly web interface, advanced reporting capabilities, and support for monitoring across multiple locations. Icinga supports plugins for extending functionality and integration with various third-party tools. However, Icinga can be resource-intensive compared to Monit.
- Grafana: Grafana is a popular open-source visualization tool commonly used with monitoring systems like Prometheus. It provides a rich set of visualizations, dashboards, and plugins to create custom monitoring solutions. Grafana supports data from various sources and offers features like alerting, annotations, and sharing dashboards. One limitation of Grafana is its focus on visualization rather than system monitoring compared to Monit.
- Datadog: Datadog is a SaaS-based monitoring and analytics platform that provides comprehensive monitoring solutions for cloud-scale applications. It offers integrations with various technologies, real-time monitoring, and advanced analytics for performance optimization. Datadog's pricing model based on the number of monitored hosts can be a drawback compared to Monit.
- Sysdig: Sysdig is a container monitoring solution that provides real-time visibility into containerized environments. It offers features like container security, performance monitoring, and troubleshooting capabilities. Sysdig's deep integration with container orchestration platforms like Kubernetes sets it apart from traditional monitoring tools like Monit.
- Netdata: Netdata is an open-source real-time monitoring and troubleshooting tool for systems and applications. It offers a highly interactive web interface, custom dashboards, and detailed metrics for various system components. Netdata's lightweight footprint and ease of installation make it a popular choice for real-time monitoring compared to Monit.
- Opsgenie: Opsgenie is an incident management platform that provides alerting, on-call scheduling, and incident response automation. It integrates with various monitoring tools to streamline alerting and resolution processes. Opsgenie's robust notification capabilities and automation features make it a valuable addition to monitoring setups alongside tools like Monit.
- Checkmk: Checkmk is an open-source monitoring tool that offers comprehensive monitoring solutions for networks, servers, applications, and cloud infrastructure. It provides a centralized monitoring platform with features like auto-discovery, performance graphs, and customizable alerts. Checkmk's user-friendly interface and scalability make it a strong alternative to Monit for monitoring complex environments.
Top Alternatives to Monit
- Nagios
Nagios is a host/service/network monitoring program written in C and released under the GNU General Public License. ...
- Zabbix
Zabbix is a mature and effortless enterprise-class open source monitoring solution for network monitoring and application monitoring of millions of metrics. ...
- Prometheus
Prometheus is a systems and service monitoring system. It collects metrics from configured targets at given intervals, evaluates rule expressions, displays the results, and can trigger alerts if some condition is observed to be true. ...
- Supervisord
It allows its users to monitor and control a number of processes on UNIX-like operating systems. It shares some of the same goals of programs like launchd, daemontools, and runit. it is meant to be used to control processes related to a project or a customer, and is meant to start like any other program at boot time. ...
- Munin
Munin is a networked resource monitoring tool that can help analyze resource trends and "what just happened to kill our performance?" problems. It is designed to be very plug and play. A default installation provides a lot of graphs with almost no work. ...
- New Relic
The world’s best software and DevOps teams rely on New Relic to move faster, make better decisions and create best-in-class digital experiences. If you run software, you need to run New Relic. More than 50% of the Fortune 100 do too. ...
- Kibana
Kibana is an open source (Apache Licensed), browser based analytics and search dashboard for Elasticsearch. Kibana is a snap to setup and start using. Kibana strives to be easy to get started with, while also being flexible and powerful, just like Elasticsearch. ...
- Grafana
Grafana is a general purpose dashboard and graph composer. It's focused on providing rich ways to visualize time series metrics, mainly though graphs but supports other ways to visualize data through a pluggable panel architecture. It currently has rich support for for Graphite, InfluxDB and OpenTSDB. But supports other data sources via plugins. ...
Monit alternatives & related posts
Nagios
- It just works53
- The standard28
- Customizable12
- The Most flexible monitoring system8
- Huge stack of free checks/plugins to choose from1
related Nagios posts
Why we spent several years building an open source, large-scale metrics alerting system, M3, built for Prometheus:
By late 2014, all services, infrastructure, and servers at Uber emitted metrics to a Graphite stack that stored them using the Whisper file format in a sharded Carbon cluster. We used Grafana for dashboarding and Nagios for alerting, issuing Graphite threshold checks via source-controlled scripts. While this worked for a while, expanding the Carbon cluster required a manual resharding process and, due to lack of replication, any single node’s disk failure caused permanent loss of its associated metrics. In short, this solution was not able to meet our needs as the company continued to grow.
To ensure the scalability of Uber’s metrics backend, we decided to build out a system that provided fault tolerant metrics ingestion, storage, and querying as a managed platform...
(GitHub : https://github.com/m3db/m3)
I am new to DevOps and looking for training in DevOps. Some institutes are offering Nagios while some Prometheus in their syllabus. Please suggest which one is being used in the industry and which one should I learn.
Zabbix
- Free21
- Alerts9
- Service/node/network discovery5
- Templates5
- Base metrics from the box4
- Multi-dashboards3
- SMS/Email/Messenger alerts3
- Grafana plugin available2
- Supports Graphs ans screens2
- Support proxies (for monitoring remote branches)2
- Perform website checking (response time, loading, ...)1
- API available for creating own apps1
- Templates free available (Zabbix Share)1
- Works with multiple databases1
- Advanced integrations1
- Supports multiple protocols/agents1
- Complete Logs Report1
- Open source1
- Supports large variety of Operating Systems1
- Supports JMX (Java, Tomcat, Jboss, ...)1
- The UI is in PHP5
- Puppet module is sluggish2
related Zabbix posts
My team is divided on using Centreon or Zabbix for enterprise monitoring and alert automation. Can someone let us know which one is better? There is one more tool called Datadog that we are using for cloud assets. Of course, Datadog presents us with huge bills. So we want to have a comparative study. Suggestions and advice are welcome. Thanks!
I am looking for an easy to set up and use monitoring solution for my servers and network infrastructure. What are the main differences between Checkmk and Zabbix? What would you recommend and why?
Prometheus
- Powerful easy to use monitoring47
- Flexible query language38
- Dimensional data model32
- Alerts27
- Active and responsive community23
- Extensive integrations22
- Easy to setup19
- Beautiful Model and Query language12
- Easy to extend7
- Nice6
- Written in Go3
- Good for experimentation2
- Easy for monitoring1
- Just for metrics12
- Bad UI6
- Needs monitoring to access metrics endpoints6
- Not easy to configure and use4
- Supports only active agents3
- Written in Go2
- TLS is quite difficult to understand2
- Requires multiple applications and tools2
- Single point of failure1
related Prometheus posts
Grafana and Prometheus together, running on Kubernetes , is a powerful combination. These tools are cloud-native and offer a large community and easy integrations. At PayIt we're using exporting Java application metrics using a Dropwizard metrics exporter, and our Node.js services now use the prom-client npm library to serve metrics.
Why we spent several years building an open source, large-scale metrics alerting system, M3, built for Prometheus:
By late 2014, all services, infrastructure, and servers at Uber emitted metrics to a Graphite stack that stored them using the Whisper file format in a sharded Carbon cluster. We used Grafana for dashboarding and Nagios for alerting, issuing Graphite threshold checks via source-controlled scripts. While this worked for a while, expanding the Carbon cluster required a manual resharding process and, due to lack of replication, any single node’s disk failure caused permanent loss of its associated metrics. In short, this solution was not able to meet our needs as the company continued to grow.
To ensure the scalability of Uber’s metrics backend, we decided to build out a system that provided fault tolerant metrics ingestion, storage, and querying as a managed platform...
(GitHub : https://github.com/m3db/m3)
Supervisord
related Supervisord posts
Munin
- Good defaults3
- Extremely fast to install2
- Alerts can trigger any command line program2
- Adheres to traditional Linux standards2
- Easy to write custom plugins1
related Munin posts
New Relic
- Easy setup415
- Really powerful344
- Awesome visualization245
- Ease of use194
- Great ui151
- Free tier106
- Great tool for insights80
- Heroku Integration66
- Market leader55
- Peace of mind49
- Push notifications21
- Email notifications20
- Heroku Add-on17
- Error Detection and Alerting16
- Multiple language support13
- SQL Analysis11
- Server Resources Monitoring11
- Transaction Tracing9
- Apdex Scores8
- Azure Add-on8
- Analysis of CPU, Disk, Memory, and Network7
- Detailed reports7
- Performance of External Services6
- Error Analysis6
- Application Availability Monitoring and Alerting6
- Application Response Times6
- Most Time Consuming Transactions5
- JVM Performance Analyzer (Java)5
- Browser Transaction Tracing4
- Top Database Operations4
- Easy to use4
- Application Map3
- Weekly Performance Email3
- Pagoda Box integration3
- Custom Dashboards3
- Easy to setup2
- Background Jobs Transaction Analysis2
- App Speed Index2
- Super Expensive1
- Team Collaboration Tools1
- Metric Data Retention1
- Metric Data Resolution1
- Worst Transactions by User Dissatisfaction1
- Real User Monitoring Overview1
- Real User Monitoring Analysis and Breakdown1
- Time Comparisons1
- Access to Performance Data API1
- Incident Detection and Alerting1
- Best of the best, what more can you ask for1
- Best monitoring on the market1
- Rails integration1
- Free1
- Proce0
- Price0
- Exceptions0
- Cost0
- Pricing model doesn't suit microservices20
- UI isn't great10
- Expensive7
- Visualizations aren't very helpful7
- Hard to understand why things in your app are breaking5
related New Relic posts
Hey there! We are looking at Datadog, Dynatrace, AppDynamics, and New Relic as options for our web application monitoring.
Current Environment: .NET Core Web app hosted on Microsoft IIS
Future Environment: Web app will be hosted on Microsoft Azure
Tech Stacks: IIS, RabbitMQ, Redis, Microsoft SQL Server
Requirement: Infra Monitoring, APM, Real - User Monitoring (User activity monitoring i.e., time spent on a page, most active page, etc.), Service Tracing, Root Cause Analysis, and Centralized Log Management.
Please advise on the above. Thanks!
I need to choose a monitoring tool for my project, but currently, my application doesn't have much load or many users. My application is not generating GBs of data. We don't want to send the user information to New Relic because it's a 3rd party tool. And we can deploy Kibana locally on our server. What should I use, Kibana or New Relic?
- Easy to setup88
- Free65
- Can search text45
- Has pie chart21
- X-axis is not restricted to timestamp13
- Easy queries and is a good way to view logs9
- Supports Plugins6
- Dev Tools4
- More "user-friendly"3
- Can build dashboards3
- Out-of-Box Dashboards/Analytics for Metrics/Heartbeat2
- Easy to drill-down2
- Up and running1
- Unintuituve7
- Works on top of elastic only4
- Elasticsearch is huge4
- Hardweight UI3
related Kibana posts
Often enough I have to explain my way of going about setting up a CI/CD pipeline with multiple deployment platforms. Since I am a bit tired of yapping the same every single time, I've decided to write it up and share with the world this way, and send people to read it instead ;). I will explain it on "live-example" of how the Rome got built, basing that current methodology exists only of readme.md and wishes of good luck (as it usually is ;)).
It always starts with an app, whatever it may be and reading the readmes available while Vagrant and VirtualBox is installing and updating. Following that is the first hurdle to go over - convert all the instruction/scripts into Ansible playbook(s), and only stopping when doing a clear vagrant up
or vagrant reload
we will have a fully working environment. As our Vagrant environment is now functional, it's time to break it! This is the moment to look for how things can be done better (too rigid/too lose versioning? Sloppy environment setup?) and replace them with the right way to do stuff, one that won't bite us in the backside. This is the point, and the best opportunity, to upcycle the existing way of doing dev environment to produce a proper, production-grade product.
I should probably digress here for a moment and explain why. I firmly believe that the way you deploy production is the same way you should deploy develop, shy of few debugging-friendly setting. This way you avoid the discrepancy between how production work vs how development works, which almost always causes major pains in the back of the neck, and with use of proper tools should mean no more work for the developers. That's why we start with Vagrant as developer boxes should be as easy as vagrant up
, but the meat of our product lies in Ansible which will do meat of the work and can be applied to almost anything: AWS, bare metal, docker, LXC, in open net, behind vpn - you name it.
We must also give proper consideration to monitoring and logging hoovering at this point. My generic answer here is to grab Elasticsearch, Kibana, and Logstash. While for different use cases there may be better solutions, this one is well battle-tested, performs reasonably and is very easy to scale both vertically (within some limits) and horizontally. Logstash rules are easy to write and are well supported in maintenance through Ansible, which as I've mentioned earlier, are at the very core of things, and creating triggers/reports and alerts based on Elastic and Kibana is generally a breeze, including some quite complex aggregations.
If we are happy with the state of the Ansible it's time to move on and put all those roles and playbooks to work. Namely, we need something to manage our CI/CD pipelines. For me, the choice is obvious: TeamCity. It's modern, robust and unlike most of the light-weight alternatives, it's transparent. What I mean by that is that it doesn't tell you how to do things, doesn't limit your ways to deploy, or test, or package for that matter. Instead, it provides a developer-friendly and rich playground for your pipelines. You can do most the same with Jenkins, but it has a quite dated look and feel to it, while also missing some key functionality that must be brought in via plugins (like quality REST API which comes built-in with TeamCity). It also comes with all the common-handy plugins like Slack or Apache Maven integration.
The exact flow between CI and CD varies too greatly from one application to another to describe, so I will outline a few rules that guide me in it: 1. Make build steps as small as possible. This way when something breaks, we know exactly where, without needing to dig and root around. 2. All security credentials besides development environment must be sources from individual Vault instances. Keys to those containers should exist only on the CI/CD box and accessible by a few people (the less the better). This is pretty self-explanatory, as anything besides dev may contain sensitive data and, at times, be public-facing. Because of that appropriate security must be present. TeamCity shines in this department with excellent secrets-management. 3. Every part of the build chain shall consume and produce artifacts. If it creates nothing, it likely shouldn't be its own build. This way if any issue shows up with any environment or version, all developer has to do it is grab appropriate artifacts to reproduce the issue locally. 4. Deployment builds should be directly tied to specific Git branches/tags. This enables much easier tracking of what caused an issue, including automated identifying and tagging the author (nothing like automated regression testing!).
Speaking of deployments, I generally try to keep it simple but also with a close eye on the wallet. Because of that, I am more than happy with AWS or another cloud provider, but also constantly peeking at the loads and do we get the value of what we are paying for. Often enough the pattern of use is not constantly erratic, but rather has a firm baseline which could be migrated away from the cloud and into bare metal boxes. That is another part where this approach strongly triumphs over the common Docker and CircleCI setup, where you are very much tied in to use cloud providers and getting out is expensive. Here to embrace bare-metal hosting all you need is a help of some container-based self-hosting software, my personal preference is with Proxmox and LXC. Following that all you must write are ansible scripts to manage hardware of Proxmox, similar way as you do for Amazon EC2 (ansible supports both greatly) and you are good to go. One does not exclude another, quite the opposite, as they can live in great synergy and cut your costs dramatically (the heavier your base load, the bigger the savings) while providing production-grade resiliency.
This is my stack in Application & Data
JavaScript PHP HTML5 jQuery Redis Amazon EC2 Ubuntu Sass Vue.js Firebase Laravel Lumen Amazon RDS GraphQL MariaDB
My Utilities Tools
Google Analytics Postman Elasticsearch
My Devops Tools
Git GitHub GitLab npm Visual Studio Code Kibana Sentry BrowserStack
My Business Tools
Slack
- Beautiful89
- Graphs are interactive68
- Free57
- Easy56
- Nicer than the Graphite web interface34
- Many integrations26
- Can build dashboards18
- Easy to specify time window10
- Can collaborate on dashboards10
- Dashboards contain number tiles9
- Open Source5
- Integration with InfluxDB5
- Click and drag to zoom in5
- Authentification and users management4
- Threshold limits in graphs4
- Alerts3
- It is open to cloud watch and many database3
- Simple and native support to Prometheus3
- Great community support2
- You can use this for development to check memcache2
- You can visualize real time data to put alerts2
- Grapsh as code0
- Plugin visualizationa0
- No interactive query builder1
related Grafana posts
Grafana and Prometheus together, running on Kubernetes , is a powerful combination. These tools are cloud-native and offer a large community and easy integrations. At PayIt we're using exporting Java application metrics using a Dropwizard metrics exporter, and our Node.js services now use the prom-client npm library to serve metrics.
Why we spent several years building an open source, large-scale metrics alerting system, M3, built for Prometheus:
By late 2014, all services, infrastructure, and servers at Uber emitted metrics to a Graphite stack that stored them using the Whisper file format in a sharded Carbon cluster. We used Grafana for dashboarding and Nagios for alerting, issuing Graphite threshold checks via source-controlled scripts. While this worked for a while, expanding the Carbon cluster required a manual resharding process and, due to lack of replication, any single node’s disk failure caused permanent loss of its associated metrics. In short, this solution was not able to meet our needs as the company continued to grow.
To ensure the scalability of Uber’s metrics backend, we decided to build out a system that provided fault tolerant metrics ingestion, storage, and querying as a managed platform...
(GitHub : https://github.com/m3db/m3)