Alternatives to NSQ logo

Alternatives to NSQ

RabbitMQ, Kafka, Redis, NATS, and gRPC are the most popular alternatives and competitors to NSQ.
142
356
+ 1
148

What is NSQ and what are its top alternatives?

NSQ is a real-time distributed messaging platform that is designed to solve the challenges of scale and reliability in a distributed system. It provides features such as high throughput, horizontal scalability, and fault tolerance. However, NSQ lacks advanced message queuing features such as message ordering, message transactions, and delayed message delivery.

  1. Apache Kafka: Apache Kafka is a distributed streaming platform that provides features like high-throughput, fault tolerance, and scalability. It supports advanced messaging features like message ordering, replay, and batch processing. Pros of Kafka include strong ordering guarantees and high fault tolerance, while cons include high complexity and learning curve.
  2. RabbitMQ: RabbitMQ is a robust and scalable message broker that supports multiple messaging protocols. It offers features like message queueing, routing, and delivery confirmation. Pros of RabbitMQ include ease of use and flexibility, while cons include lower throughput compared to NSQ.
  3. Amazon SQS: Amazon Simple Queue Service (SQS) is a fully managed message queuing service that offers reliability, scalability, and simplicity. It provides features like message deduplication and at-least-once delivery. Pros of SQS include ease of use and integration with other AWS services, while cons include limitations on message size and visibility timeout.
  4. Apache Pulsar: Apache Pulsar is a cloud-native, distributed messaging system that offers features like low-latency, scalable message queuing, and streaming. Pros of Pulsar include multi-tenancy support and geo-replication, while cons include a steeper learning curve.
  5. NATS: NATS is a high-performance messaging system that provides simplicity, performance, and scalability. It offers features like publish-subscribe messaging and request-reply messaging patterns. Pros of NATS include simplicity and performance, while cons include lack of advanced message queuing features.
  6. ActiveMQ: Apache ActiveMQ is a powerful and flexible open-source message broker that supports multiple messaging protocols. It offers features like message persistence, clustering, and high availability. Pros of ActiveMQ include robustness and reliability, while cons include potential performance issues with high message volume.
  7. Redis: Redis is an in-memory data structure store that can be used as a message broker for real-time processing. It offers features like pub/sub messaging, pipelining, and clustering. Pros of Redis include high performance and simplicity, while cons include limited durability and persistence options.
  8. Google Cloud Pub/Sub: Google Cloud Pub/Sub is a fully managed real-time messaging service that offers features like low-latency, scalability, and global availability. Pros of Pub/Sub include integration with other Google Cloud services and strong security features, while cons include potential costs for high message volume.
  9. KubeMQ: KubeMQ is a Kubernetes-native message broker that provides features like message queuing, streaming, and event-driven architecture. Pros of KubeMQ include easy deployment within Kubernetes clusters and scalability, while cons include limited features compared to established message brokers.
  10. RocketMQ: Apache RocketMQ is a distributed messaging system that offers features like low latency, high availability, and message ordering. Pros of RocketMQ include high performance and reliability, while cons include a smaller community compared to other message brokers.

Top Alternatives to NSQ

  • RabbitMQ
    RabbitMQ

    RabbitMQ gives your applications a common platform to send and receive messages, and your messages a safe place to live until received. ...

  • Kafka
    Kafka

    Kafka is a distributed, partitioned, replicated commit log service. It provides the functionality of a messaging system, but with a unique design. ...

  • Redis
    Redis

    Redis is an open source (BSD licensed), in-memory data structure store, used as a database, cache, and message broker. Redis provides data structures such as strings, hashes, lists, sets, sorted sets with range queries, bitmaps, hyperloglogs, geospatial indexes, and streams. ...

  • NATS
    NATS

    Unlike traditional enterprise messaging systems, NATS has an always-on dial tone that does whatever it takes to remain available. This forms a great base for building modern, reliable, and scalable cloud and distributed systems. ...

  • gRPC
    gRPC

    gRPC is a modern open source high performance RPC framework that can run in any environment. It can efficiently connect services in and across data centers with pluggable support for load balancing, tracing, health checking... ...

  • MQTT
    MQTT

    It was designed as an extremely lightweight publish/subscribe messaging transport. It is useful for connections with remote locations where a small code footprint is required and/or network bandwidth is at a premium. ...

  • ZeroMQ
    ZeroMQ

    The 0MQ lightweight messaging kernel is a library which extends the standard socket interfaces with features traditionally provided by specialised messaging middleware products. 0MQ sockets provide an abstraction of asynchronous message queues, multiple messaging patterns, message filtering (subscriptions), seamless access to multiple transport protocols and more. ...

  • MySQL
    MySQL

    The MySQL software delivers a very fast, multi-threaded, multi-user, and robust SQL (Structured Query Language) database server. MySQL Server is intended for mission-critical, heavy-load production systems as well as for embedding into mass-deployed software. ...

NSQ alternatives & related posts

RabbitMQ logo

RabbitMQ

21.4K
557
Open source multiprotocol messaging broker
21.4K
557
PROS OF RABBITMQ
  • 235
    It's fast and it works with good metrics/monitoring
  • 80
    Ease of configuration
  • 60
    I like the admin interface
  • 52
    Easy to set-up and start with
  • 22
    Durable
  • 19
    Standard protocols
  • 19
    Intuitive work through python
  • 11
    Written primarily in Erlang
  • 9
    Simply superb
  • 7
    Completeness of messaging patterns
  • 4
    Reliable
  • 4
    Scales to 1 million messages per second
  • 3
    Better than most traditional queue based message broker
  • 3
    Distributed
  • 3
    Supports MQTT
  • 3
    Supports AMQP
  • 2
    Clear documentation with different scripting language
  • 2
    Better routing system
  • 2
    Inubit Integration
  • 2
    Great ui
  • 2
    High performance
  • 2
    Reliability
  • 2
    Open-source
  • 2
    Runs on Open Telecom Platform
  • 2
    Clusterable
  • 2
    Delayed messages
  • 1
    Supports Streams
  • 1
    Supports STOMP
  • 1
    Supports JMS
CONS OF RABBITMQ
  • 9
    Too complicated cluster/HA config and management
  • 6
    Needs Erlang runtime. Need ops good with Erlang runtime
  • 5
    Configuration must be done first, not by your code
  • 4
    Slow

related RabbitMQ posts

James Cunningham
Operations Engineer at Sentry · | 18 upvotes · 1.8M views
Shared insights
on
CeleryCeleryRabbitMQRabbitMQ
at

As Sentry runs throughout the day, there are about 50 different offline tasks that we execute—anything from “process this event, pretty please” to “send all of these cool people some emails.” There are some that we execute once a day and some that execute thousands per second.

Managing this variety requires a reliably high-throughput message-passing technology. We use Celery's RabbitMQ implementation, and we stumbled upon a great feature called Federation that allows us to partition our task queue across any number of RabbitMQ servers and gives us the confidence that, if any single server gets backlogged, others will pitch in and distribute some of the backlogged tasks to their consumers.

#MessageQueue

See more
Yogesh Bhondekar
Product Manager | SaaS | Traveller · | 16 upvotes · 458.9K views

Hi, I am building an enhanced web-conferencing app that will have a voice/video call, live chats, live notifications, live discussions, screen sharing, etc features. Ref: Zoom.

I need advise finalizing the tech stack for this app. I am considering below tech stack:

  • Frontend: React
  • Backend: Node.js
  • Database: MongoDB
  • IAAS: #AWS
  • Containers & Orchestration: Docker / Kubernetes
  • DevOps: GitLab, Terraform
  • Brokers: Redis / RabbitMQ

I need advice at the platform level as to what could be considered to support concurrent video streaming seamlessly.

Also, please suggest what could be a better tech stack for my app?

#SAAS #VideoConferencing #WebAndVideoConferencing #zoom #stack

See more
Kafka logo

Kafka

23.7K
607
Distributed, fault tolerant, high throughput pub-sub messaging system
23.7K
607
PROS OF KAFKA
  • 126
    High-throughput
  • 119
    Distributed
  • 92
    Scalable
  • 86
    High-Performance
  • 66
    Durable
  • 38
    Publish-Subscribe
  • 19
    Simple-to-use
  • 18
    Open source
  • 12
    Written in Scala and java. Runs on JVM
  • 9
    Message broker + Streaming system
  • 4
    KSQL
  • 4
    Avro schema integration
  • 4
    Robust
  • 3
    Suport Multiple clients
  • 2
    Extremely good parallelism constructs
  • 2
    Partioned, replayable log
  • 1
    Simple publisher / multi-subscriber model
  • 1
    Fun
  • 1
    Flexible
CONS OF KAFKA
  • 32
    Non-Java clients are second-class citizens
  • 29
    Needs Zookeeper
  • 9
    Operational difficulties
  • 5
    Terrible Packaging

related Kafka posts

Nick Rockwell
SVP, Engineering at Fastly · | 46 upvotes · 4.2M views

When I joined NYT there was already broad dissatisfaction with the LAMP (Linux Apache HTTP Server MySQL PHP) Stack and the front end framework, in particular. So, I wasn't passing judgment on it. I mean, LAMP's fine, you can do good work in LAMP. It's a little dated at this point, but it's not ... I didn't want to rip it out for its own sake, but everyone else was like, "We don't like this, it's really inflexible." And I remember from being outside the company when that was called MIT FIVE when it had launched. And been observing it from the outside, and I was like, you guys took so long to do that and you did it so carefully, and yet you're not happy with your decisions. Why is that? That was more the impetus. If we're going to do this again, how are we going to do it in a way that we're gonna get a better result?

So we're moving quickly away from LAMP, I would say. So, right now, the new front end is React based and using Apollo. And we've been in a long, protracted, gradual rollout of the core experiences.

React is now talking to GraphQL as a primary API. There's a Node.js back end, to the front end, which is mainly for server-side rendering, as well.

Behind there, the main repository for the GraphQL server is a big table repository, that we call Bodega because it's a convenience store. And that reads off of a Kafka pipeline.

See more
Ashish Singh
Tech Lead, Big Data Platform at Pinterest · | 38 upvotes · 3.4M views

To provide employees with the critical need of interactive querying, we’ve worked with Presto, an open-source distributed SQL query engine, over the years. Operating Presto at Pinterest’s scale has involved resolving quite a few challenges like, supporting deeply nested and huge thrift schemas, slow/ bad worker detection and remediation, auto-scaling cluster, graceful cluster shutdown and impersonation support for ldap authenticator.

Our infrastructure is built on top of Amazon EC2 and we leverage Amazon S3 for storing our data. This separates compute and storage layers, and allows multiple compute clusters to share the S3 data.

We have hundreds of petabytes of data and tens of thousands of Apache Hive tables. Our Presto clusters are comprised of a fleet of 450 r4.8xl EC2 instances. Presto clusters together have over 100 TBs of memory and 14K vcpu cores. Within Pinterest, we have close to more than 1,000 monthly active users (out of total 1,600+ Pinterest employees) using Presto, who run about 400K queries on these clusters per month.

Each query submitted to Presto cluster is logged to a Kafka topic via Singer. Singer is a logging agent built at Pinterest and we talked about it in a previous post. Each query is logged when it is submitted and when it finishes. When a Presto cluster crashes, we will have query submitted events without corresponding query finished events. These events enable us to capture the effect of cluster crashes over time.

Each Presto cluster at Pinterest has workers on a mix of dedicated AWS EC2 instances and Kubernetes pods. Kubernetes platform provides us with the capability to add and remove workers from a Presto cluster very quickly. The best-case latency on bringing up a new worker on Kubernetes is less than a minute. However, when the Kubernetes cluster itself is out of resources and needs to scale up, it can take up to ten minutes. Some other advantages of deploying on Kubernetes platform is that our Presto deployment becomes agnostic of cloud vendor, instance types, OS, etc.

#BigData #AWS #DataScience #DataEngineering

See more
Redis logo

Redis

59.7K
3.9K
Open source (BSD licensed), in-memory data structure store
59.7K
3.9K
PROS OF REDIS
  • 887
    Performance
  • 542
    Super fast
  • 514
    Ease of use
  • 444
    In-memory cache
  • 324
    Advanced key-value cache
  • 194
    Open source
  • 182
    Easy to deploy
  • 165
    Stable
  • 156
    Free
  • 121
    Fast
  • 42
    High-Performance
  • 40
    High Availability
  • 35
    Data Structures
  • 32
    Very Scalable
  • 24
    Replication
  • 23
    Pub/Sub
  • 22
    Great community
  • 19
    "NoSQL" key-value data store
  • 16
    Hashes
  • 13
    Sets
  • 11
    Sorted Sets
  • 10
    Lists
  • 10
    NoSQL
  • 9
    Async replication
  • 9
    BSD licensed
  • 8
    Integrates super easy with Sidekiq for Rails background
  • 8
    Bitmaps
  • 7
    Open Source
  • 7
    Keys with a limited time-to-live
  • 6
    Lua scripting
  • 6
    Strings
  • 5
    Awesomeness for Free
  • 5
    Hyperloglogs
  • 4
    Runs server side LUA
  • 4
    Transactions
  • 4
    Networked
  • 4
    Outstanding performance
  • 4
    Feature Rich
  • 4
    Written in ANSI C
  • 4
    LRU eviction of keys
  • 3
    Data structure server
  • 3
    Performance & ease of use
  • 2
    Temporarily kept on disk
  • 2
    Dont save data if no subscribers are found
  • 2
    Automatic failover
  • 2
    Easy to use
  • 2
    Scalable
  • 2
    Channels concept
  • 2
    Object [key/value] size each 500 MB
  • 2
    Existing Laravel Integration
  • 2
    Simple
CONS OF REDIS
  • 15
    Cannot query objects directly
  • 3
    No secondary indexes for non-numeric data types
  • 1
    No WAL

related Redis posts

Russel Werner
Lead Engineer at StackShare · | 32 upvotes · 2.8M views

StackShare Feed is built entirely with React, Glamorous, and Apollo. One of our objectives with the public launch of the Feed was to enable a Server-side rendered (SSR) experience for our organic search traffic. When you visit the StackShare Feed, and you aren't logged in, you are delivered the Trending feed experience. We use an in-house Node.js rendering microservice to generate this HTML. This microservice needs to run and serve requests independent of our Rails web app. Up until recently, we had a mono-repo with our Rails and React code living happily together and all served from the same web process. In order to deploy our SSR app into a Heroku environment, we needed to split out our front-end application into a separate repo in GitHub. The driving factor in this decision was mostly due to limitations imposed by Heroku specifically with how processes can't communicate with each other. A new SSR app was created in Heroku and linked directly to the frontend repo so it stays in-sync with changes.

Related to this, we need a way to "deploy" our frontend changes to various server environments without building & releasing the entire Ruby application. We built a hybrid Amazon S3 Amazon CloudFront solution to host our Webpack bundles. A new CircleCI script builds the bundles and uploads them to S3. The final step in our rollout is to update some keys in Redis so our Rails app knows which bundles to serve. The result of these efforts were significant. Our frontend team now moves independently of our backend team, our build & release process takes only a few minutes, we are now using an edge CDN to serve JS assets, and we have pre-rendered React pages!

#StackDecisionsLaunch #SSR #Microservices #FrontEndRepoSplit

See more
Simon Reymann
Senior Fullstack Developer at QUANTUSflow Software GmbH · | 30 upvotes · 11.8M views

Our whole DevOps stack consists of the following tools:

  • GitHub (incl. GitHub Pages/Markdown for Documentation, GettingStarted and HowTo's) for collaborative review and code management tool
  • Respectively Git as revision control system
  • SourceTree as Git GUI
  • Visual Studio Code as IDE
  • CircleCI for continuous integration (automatize development process)
  • Prettier / TSLint / ESLint as code linter
  • SonarQube as quality gate
  • Docker as container management (incl. Docker Compose for multi-container application management)
  • VirtualBox for operating system simulation tests
  • Kubernetes as cluster management for docker containers
  • Heroku for deploying in test environments
  • nginx as web server (preferably used as facade server in production environment)
  • SSLMate (using OpenSSL) for certificate management
  • Amazon EC2 (incl. Amazon S3) for deploying in stage (production-like) and production environments
  • PostgreSQL as preferred database system
  • Redis as preferred in-memory database/store (great for caching)

The main reason we have chosen Kubernetes over Docker Swarm is related to the following artifacts:

  • Key features: Easy and flexible installation, Clear dashboard, Great scaling operations, Monitoring is an integral part, Great load balancing concepts, Monitors the condition and ensures compensation in the event of failure.
  • Applications: An application can be deployed using a combination of pods, deployments, and services (or micro-services).
  • Functionality: Kubernetes as a complex installation and setup process, but it not as limited as Docker Swarm.
  • Monitoring: It supports multiple versions of logging and monitoring when the services are deployed within the cluster (Elasticsearch/Kibana (ELK), Heapster/Grafana, Sysdig cloud integration).
  • Scalability: All-in-one framework for distributed systems.
  • Other Benefits: Kubernetes is backed by the Cloud Native Computing Foundation (CNCF), huge community among container orchestration tools, it is an open source and modular tool that works with any OS.
See more
NATS logo

NATS

373
60
Lightweight publish-subscribe & distributed queueing messaging system
373
60
PROS OF NATS
  • 22
    Fastest pub-sub system out there
  • 16
    Rock solid
  • 12
    Easy to grasp
  • 4
    Light-weight
  • 4
    Easy, Fast, Secure
  • 2
    Robust Security Model
CONS OF NATS
  • 2
    Persistence with Jetstream supported
  • 1
    No Order
  • 1
    No Persistence

related NATS posts

Reza Saadat
IoT Solutions Architect at GreenEdge · | 5 upvotes · 94.8K views
Shared insights
on
MQTTMQTTNATSNATS

I want to use NATS for my IoT Platform and replace it instead of the MQTT broker. is there any preferred added value to do that?

See more
gRPC logo

gRPC

2.2K
63
A high performance, open-source universal RPC framework
2.2K
63
PROS OF GRPC
  • 24
    Higth performance
  • 15
    The future of API
  • 13
    Easy setup
  • 5
    Contract-based
  • 4
    Polyglot
  • 2
    Garbage
CONS OF GRPC
    Be the first to leave a con

    related gRPC posts

    Noah Zoschke
    Engineering Manager at Segment · | 30 upvotes · 499.2K views

    We just launched the Segment Config API (try it out for yourself here) — a set of public REST APIs that enable you to manage your Segment configuration. Behind the scenes the Config API is built with Go , GRPC and Envoy.

    At Segment, we build new services in Go by default. The language is simple so new team members quickly ramp up on a codebase. The tool chain is fast so developers get immediate feedback when they break code, tests or integrations with other systems. The runtime is fast so it performs great at scale.

    For the newest round of APIs we adopted the GRPC service #framework.

    The Protocol Buffer service definition language makes it easy to design type-safe and consistent APIs, thanks to ecosystem tools like the Google API Design Guide for API standards, uber/prototool for formatting and linting .protos and lyft/protoc-gen-validate for defining field validations, and grpc-gateway for defining REST mapping.

    With a well designed .proto, its easy to generate a Go server interface and a TypeScript client, providing type-safe RPC between languages.

    For the API gateway and RPC we adopted the Envoy service proxy.

    The internet-facing segmentapis.com endpoint is an Envoy front proxy that rate-limits and authenticates every request. It then transcodes a #REST / #JSON request to an upstream GRPC request. The upstream GRPC servers are running an Envoy sidecar configured for Datadog stats.

    The result is API #security , #reliability and consistent #observability through Envoy configuration, not code.

    We experimented with Swagger service definitions, but the spec is sprawling and the generated clients and server stubs leave a lot to be desired. GRPC and .proto and the Go implementation feels better designed and implemented. Thanks to the GRPC tooling and ecosystem you can generate Swagger from .protos, but it’s effectively impossible to go the other way.

    See more
    Dylan Krupp
    Shared insights
    on
    gRPCgRPCGraphQLGraphQL

    I used GraphQL extensively at a previous employer a few years ago and really appreciated the data-driven schema etc alongside the many other benefits it provided. At that time, it seemed like it was set to replace RESTful APIs and many companies were adopting it.

    However, as of late, it seems like interest has been waning for GraphQL as opposed to increasing as I had assumed it would. Am I missing something here? What is the current perspective regarding this technology?

    Currently, I'm working with gRPC and was curious as to the state of everything now.

    See more
    MQTT logo

    MQTT

    617
    7
    A machine-to-machine Internet of Things connectivity protocol
    617
    7
    PROS OF MQTT
    • 3
      Varying levels of Quality of Service to fit a range of
    • 2
      Lightweight with a relatively small data footprint
    • 2
      Very easy to configure and use with open source tools
    CONS OF MQTT
    • 1
      Easy to configure in an unsecure manner

    related MQTT posts

    Kindly suggest the best tool for generating 10Mn+ concurrent user load. The tool must support MQTT traffic, REST API, support to interfaces such as Kafka, websockets, persistence HTTP connection, auth type support to assess the support /coverage.

    The tool can be integrated into CI pipelines like Azure Pipelines, GitHub, and Jenkins.

    See more
    Shared insights
    on
    MQTTMQTTReductStoreReductStore

    You can use ReductStore to keep a history of MQTT messages by using its Client SDKs. This can be useful if you use a binary format for your data and it can be recorded in a classical TSDB. You can set a FIFO quota for a bucket in your ReductStore instance so that the database removes old MQTT messages when the limit is reached.

    See more
    ZeroMQ logo

    ZeroMQ

    260
    71
    Fast, lightweight messaging library that allows you to design complex communication system without much effort
    260
    71
    PROS OF ZEROMQ
    • 23
      Fast
    • 20
      Lightweight
    • 11
      Transport agnostic
    • 7
      No broker required
    • 4
      Low level APIs are in C
    • 4
      Low latency
    • 1
      Open source
    • 1
      Publish-Subscribe
    CONS OF ZEROMQ
    • 5
      No message durability
    • 3
      Not a very reliable system - message delivery wise
    • 1
      M x N problem with M producers and N consumers

    related ZeroMQ posts

    Shared insights
    on
    MongoDBMongoDBZeroMQZeroMQSpring BootSpring Boot

    In our Spring Boot application, which encompasses various projects, we employ ZeroMQ (ZMQ) for communication via a req/resp pattern. Recently, I observed that data is persisted in the MongoDB database before being transmitted to other applications. I've identified a method to monitor changes to the database, and I'm contemplating whether to utilize this monitoring approach to detect changes and execute the necessary instructions.

    Which approach is more advisable in this scenario: leveraging the database monitoring mechanism or sticking with the current ZMQ req/resp communication?

    Essentially, I'm seeking guidance on whether to rely on database monitoring for change detection and subsequent actions or to continue with the existing ZMQ communication pattern.

    See more
    Meili Triantafyllidi
    Software engineer at Digital Science · | 6 upvotes · 481.5K views
    Shared insights
    on
    Amazon SQSAmazon SQSRabbitMQRabbitMQZeroMQZeroMQ

    Hi, we are in a ZMQ set up in a push/pull pattern, and we currently start to have more traffic and cases that the service is unavailable or stuck. We want to: * Not loose messages in services outages * Safely restart service without losing messages (ZeroMQ seems to need to close the socket in the receiver before restart manually)

    Do you have experience with this setup with ZeroMQ? Would you suggest RabbitMQ or Amazon SQS (we are in AWS setup) instead? Something else?

    Thank you for your time

    See more
    MySQL logo

    MySQL

    125.9K
    3.8K
    The world's most popular open source database
    125.9K
    3.8K
    PROS OF MYSQL
    • 800
      Sql
    • 679
      Free
    • 562
      Easy
    • 528
      Widely used
    • 490
      Open source
    • 180
      High availability
    • 160
      Cross-platform support
    • 104
      Great community
    • 79
      Secure
    • 75
      Full-text indexing and searching
    • 26
      Fast, open, available
    • 16
      Reliable
    • 16
      SSL support
    • 15
      Robust
    • 9
      Enterprise Version
    • 7
      Easy to set up on all platforms
    • 3
      NoSQL access to JSON data type
    • 1
      Relational database
    • 1
      Easy, light, scalable
    • 1
      Sequel Pro (best SQL GUI)
    • 1
      Replica Support
    CONS OF MYSQL
    • 16
      Owned by a company with their own agenda
    • 3
      Can't roll back schema changes

    related MySQL posts

    Nick Rockwell
    SVP, Engineering at Fastly · | 46 upvotes · 4.2M views

    When I joined NYT there was already broad dissatisfaction with the LAMP (Linux Apache HTTP Server MySQL PHP) Stack and the front end framework, in particular. So, I wasn't passing judgment on it. I mean, LAMP's fine, you can do good work in LAMP. It's a little dated at this point, but it's not ... I didn't want to rip it out for its own sake, but everyone else was like, "We don't like this, it's really inflexible." And I remember from being outside the company when that was called MIT FIVE when it had launched. And been observing it from the outside, and I was like, you guys took so long to do that and you did it so carefully, and yet you're not happy with your decisions. Why is that? That was more the impetus. If we're going to do this again, how are we going to do it in a way that we're gonna get a better result?

    So we're moving quickly away from LAMP, I would say. So, right now, the new front end is React based and using Apollo. And we've been in a long, protracted, gradual rollout of the core experiences.

    React is now talking to GraphQL as a primary API. There's a Node.js back end, to the front end, which is mainly for server-side rendering, as well.

    Behind there, the main repository for the GraphQL server is a big table repository, that we call Bodega because it's a convenience store. And that reads off of a Kafka pipeline.

    See more
    Tim Abbott

    We've been using PostgreSQL since the very early days of Zulip, but we actually didn't use it from the beginning. Zulip started out as a MySQL project back in 2012, because we'd heard it was a good choice for a startup with a wide community. However, we found that even though we were using the Django ORM for most of our database access, we spent a lot of time fighting with MySQL. Issues ranged from bad collation defaults, to bad query plans which required a lot of manual query tweaks.

    We ended up getting so frustrated that we tried out PostgresQL, and the results were fantastic. We didn't have to do any real customization (just some tuning settings for how big a server we had), and all of our most important queries were faster out of the box. As a result, we were able to delete a bunch of custom queries escaping the ORM that we'd written to make the MySQL query planner happy (because postgres just did the right thing automatically).

    And then after that, we've just gotten a ton of value out of postgres. We use its excellent built-in full-text search, which has helped us avoid needing to bring in a tool like Elasticsearch, and we've really enjoyed features like its partial indexes, which saved us a lot of work adding unnecessary extra tables to get good performance for things like our "unread messages" and "starred messages" indexes.

    I can't recommend it highly enough.

    See more