StackShareStackShare
Follow on
StackShare

Discover and share technology stacks from companies around the world.

Follow on

© 2025 StackShare. All rights reserved.

Product

  • Stacks
  • Tools
  • Feed

Company

  • About
  • Contact

Legal

  • Privacy Policy
  • Terms of Service
  1. Stackups
  2. AI
  3. Development & Training Tools
  4. Data Science Tools
  5. PyXLL vs StreamSets

PyXLL vs StreamSets

OverviewComparisonAlternatives

Overview

PyXLL
PyXLL
Stacks8
Followers104
Votes8
StreamSets
StreamSets
Stacks53
Followers133
Votes0

PyXLL vs StreamSets: What are the differences?

What is PyXLL? The Python Add-In for Microsoft Excel. Integrate Python into Microsoft Excel Use Excel as your user-facing front-end with calculations, business logic and data access powered by Python.

Works with all 3rd party and open source Python packages. No need to write any VBA!.

What is StreamSets? Where DevOps Meets Data Integration. The industry's first data operations platform for full life-cycle management of data in motion.

PyXLL and StreamSets belong to "Data Science Tools" category of the tech stack.

Some of the features offered by PyXLL are:

  • User Defined Functions: Write Excel worksheet functions in Python - no VBA required
  • Ribbon Customization: Give your users a rich Excel native experience
  • Macros: No need for VBA, access to the full Excel Object Model in Python

On the other hand, StreamSets provides the following key features:

  • Build Batch & Streaming Pipelines in Hours
  • Map and Monitor Runtime Performance
  • Protect Sensitive Data as it Arrives

Share your Stack

Help developers discover the tools you use. Get visibility for your team's tech choices and contribute to the community's knowledge.

View Docs
CLI (Node.js)
or
Manual

Detailed Comparison

PyXLL
PyXLL
StreamSets
StreamSets

Integrate Python into Microsoft Excel. Use Excel as your user-facing front-end with calculations, business logic and data access powered by Python. Works with all 3rd party and open source Python packages. No need to write any VBA!

An end-to-end data integration platform to build, run, monitor and manage smart data pipelines that deliver continuous data for DataOps.

User Defined Functions: Write Excel worksheet functions in Python - no VBA required;Ribbon Customization: Give your users a rich Excel native experience;Macros: No need for VBA, access to the full Excel Object Model in Python;Menu Functions: Call Python functions from Excel menus, and give common tasks keyboard shortcuts;Real Time Data: Stream data to Excel in real-time using Python;Array Functions: Return tables of data to Excel that resize automatically;IntelliSense: Auto-complete worksheet functions as you type them;NumPy and Pandas Integration: Use NumPy and Pandas types in Excel
Only StreamSets provides a single design experience for all design patterns (batch, streaming, CDC, ETL, ELT, and ML pipelines) for 10x greater developer productivity; smart data pipelines that are resilient to change for 80% less breakages; and a single pane of glass for managing and monitoring all pipelines across hybrid and cloud architectures to eliminate blind spots and control gaps.
Statistics
Stacks
8
Stacks
53
Followers
104
Followers
133
Votes
8
Votes
0
Pros & Cons
Pros
  • 5
    Fully replace VBA with Python
  • 2
    Excellent support
  • 1
    Very good performance
Cons
  • 1
    Cannot be deloyed to mac users
Cons
  • 2
    No user community
  • 1
    Crashes
Integrations
Python
Python
Microsoft Excel
Microsoft Excel
Pandas
Pandas
NumPy
NumPy
HBase
HBase
Databricks
Databricks
Amazon Redshift
Amazon Redshift
MySQL
MySQL
gRPC
gRPC
Google BigQuery
Google BigQuery
Amazon Kinesis
Amazon Kinesis
Cassandra
Cassandra
Hadoop
Hadoop
Redis
Redis

What are some alternatives to PyXLL, StreamSets?

Kafka

Kafka

Kafka is a distributed, partitioned, replicated commit log service. It provides the functionality of a messaging system, but with a unique design.

RabbitMQ

RabbitMQ

RabbitMQ gives your applications a common platform to send and receive messages, and your messages a safe place to live until received.

Celery

Celery

Celery is an asynchronous task queue/job queue based on distributed message passing. It is focused on real-time operation, but supports scheduling as well.

Amazon SQS

Amazon SQS

Transmit any volume of data, at any level of throughput, without losing messages or requiring other services to be always available. With SQS, you can offload the administrative burden of operating and scaling a highly available messaging cluster, while paying a low price for only what you use.

NSQ

NSQ

NSQ is a realtime distributed messaging platform designed to operate at scale, handling billions of messages per day. It promotes distributed and decentralized topologies without single points of failure, enabling fault tolerance and high availability coupled with a reliable message delivery guarantee. See features & guarantees.

Apache Spark

Apache Spark

Spark is a fast and general processing engine compatible with Hadoop data. It can run in Hadoop clusters through YARN or Spark's standalone mode, and it can process data in HDFS, HBase, Cassandra, Hive, and any Hadoop InputFormat. It is designed to perform both batch processing (similar to MapReduce) and new workloads like streaming, interactive queries, and machine learning.

ActiveMQ

ActiveMQ

Apache ActiveMQ is fast, supports many Cross Language Clients and Protocols, comes with easy to use Enterprise Integration Patterns and many advanced features while fully supporting JMS 1.1 and J2EE 1.4. Apache ActiveMQ is released under the Apache 2.0 License.

ZeroMQ

ZeroMQ

The 0MQ lightweight messaging kernel is a library which extends the standard socket interfaces with features traditionally provided by specialised messaging middleware products. 0MQ sockets provide an abstraction of asynchronous message queues, multiple messaging patterns, message filtering (subscriptions), seamless access to multiple transport protocols and more.

Presto

Presto

Distributed SQL Query Engine for Big Data

Apache NiFi

Apache NiFi

An easy to use, powerful, and reliable system to process and distribute data. It supports powerful and scalable directed graphs of data routing, transformation, and system mediation logic.

Related Comparisons

Bootstrap
Materialize

Bootstrap vs Materialize

Laravel
Django

Django vs Laravel vs Node.js

Bootstrap
Foundation

Bootstrap vs Foundation vs Material UI

Node.js
Spring Boot

Node.js vs Spring-Boot

Liquibase
Flyway

Flyway vs Liquibase