Alternatives to Rapidoid logo

Alternatives to Rapidoid

Spring, Apache Spark, Undertow, Spring Boot, and Netty are the most popular alternatives and competitors to Rapidoid.
5
1

What is Rapidoid and what are its top alternatives?

Rapidoid consists of several de-coupled modules/frameworks which can be used separately or together: http-fast, gui, web, fluent, u, and more.
Rapidoid is a tool in the Frameworks (Full Stack) category of a tech stack.
Rapidoid is an open source tool with 1.6K GitHub stars and 165 GitHub forks. Here’s a link to Rapidoid's open source repository on GitHub

Top Alternatives to Rapidoid

  • Spring
    Spring

    A key element of Spring is infrastructural support at the application level: Spring focuses on the "plumbing" of enterprise applications so that teams can focus on application-level business logic, without unnecessary ties to specific deployment environments. ...

  • Apache Spark
    Apache Spark

    Spark is a fast and general processing engine compatible with Hadoop data. It can run in Hadoop clusters through YARN or Spark's standalone mode, and it can process data in HDFS, HBase, Cassandra, Hive, and any Hadoop InputFormat. It is designed to perform both batch processing (similar to MapReduce) and new workloads like streaming, interactive queries, and machine learning. ...

  • Undertow
    Undertow

    It is a flexible performant web server written in java, providing both blocking and non-blocking API’s based on NIO. It has a composition based architecture that allows you to build a web server by combining small single purpose handlers. The gives you the flexibility to choose between a full Java EE servlet 4.0 container, or a low level non-blocking handler, to anything in between. ...

  • Spring Boot
    Spring Boot

    Spring Boot makes it easy to create stand-alone, production-grade Spring based Applications that you can "just run". We take an opinionated view of the Spring platform and third-party libraries so you can get started with minimum fuss. Most Spring Boot applications need very little Spring configuration. ...

  • Netty
    Netty

    Netty is a NIO client server framework which enables quick and easy development of network applications such as protocol servers and clients. It greatly simplifies and streamlines network programming such as TCP and UDP socket server. ...

  • Jetty
    Jetty

    Jetty is used in a wide variety of projects and products, both in development and production. Jetty can be easily embedded in devices, tools, frameworks, application servers, and clusters. See the Jetty Powered page for more uses of Jetty. ...

  • JavaScript
    JavaScript

    JavaScript is most known as the scripting language for Web pages, but used in many non-browser environments as well such as node.js or Apache CouchDB. It is a prototype-based, multi-paradigm scripting language that is dynamic,and supports object-oriented, imperative, and functional programming styles. ...

  • Python
    Python

    Python is a general purpose programming language created by Guido Van Rossum. Python is most praised for its elegant syntax and readable code, if you are just beginning your programming career python suits you best. ...

Rapidoid alternatives & related posts

Spring logo

Spring

4K
4.8K
1.1K
Provides a comprehensive programming and configuration model for modern Java-based enterprise applications
4K
4.8K
+ 1
1.1K
PROS OF SPRING
  • 230
    Java
  • 157
    Open source
  • 136
    Great community
  • 123
    Very powerful
  • 114
    Enterprise
  • 64
    Lot of great subprojects
  • 60
    Easy setup
  • 44
    Convention , configuration, done
  • 40
    Standard
  • 31
    Love the logic
  • 13
    Good documentation
  • 11
    Dependency injection
  • 11
    Stability
  • 9
    MVC
  • 6
    Easy
  • 3
    Makes the hard stuff fun & the easy stuff automatic
  • 3
    Strong typing
  • 2
    Code maintenance
  • 2
    Best practices
  • 2
    Maven
  • 2
    Great Desgin
  • 2
    Easy Integration with Spring Security
  • 2
    Integrations with most other Java frameworks
  • 1
    Java has more support and more libraries
  • 1
    Supports vast databases
  • 1
    Large ecosystem with seamless integration
  • 1
    OracleDb integration
  • 1
    Live project
CONS OF SPRING
  • 15
    Draws you into its own ecosystem and bloat
  • 3
    Verbose configuration
  • 3
    Poor documentation
  • 3
    Java
  • 2
    Java is more verbose language in compare to python

related Spring posts

Is learning Spring and Spring Boot for web apps back-end development is still relevant in 2021? Feel free to share your views with comparison to Django/Node.js/ ExpressJS or other frameworks.

Please share some good beginner resources to start learning about spring/spring boot framework to build the web apps.

See more

I am consulting for a company that wants to move its current CubeCart e-commerce site to another PHP based platform like PrestaShop or Magento. I was interested in alternatives that utilize Node.js as the primary platform. I currently don't know PHP, but I have done full stack dev with Java, Spring, Thymeleaf, etc.. I am just unsure that learning a set of technologies not commonly used makes sense. For example, in PrestaShop, I would need to work with JavaScript better and learn PHP, Twig, and Bootstrap. It seems more cumbersome than a Node JS system, where the language syntax stays the same for the full stack. I am looking for thoughts and advice on the relevance of PHP skillset into the future AND whether the Node based e-commerce open source options can compete with Magento or Prestashop.

See more
Apache Spark logo

Apache Spark

3K
3.5K
140
Fast and general engine for large-scale data processing
3K
3.5K
+ 1
140
PROS OF APACHE SPARK
  • 61
    Open-source
  • 48
    Fast and Flexible
  • 8
    One platform for every big data problem
  • 8
    Great for distributed SQL like applications
  • 6
    Easy to install and to use
  • 3
    Works well for most Datascience usecases
  • 2
    Interactive Query
  • 2
    Machine learning libratimery, Streaming in real
  • 2
    In memory Computation
CONS OF APACHE SPARK
  • 4
    Speed

related Apache Spark posts

Eric Colson
Chief Algorithms Officer at Stitch Fix · | 21 upvotes · 6.1M views

The algorithms and data infrastructure at Stitch Fix is housed in #AWS. Data acquisition is split between events flowing through Kafka, and periodic snapshots of PostgreSQL DBs. We store data in an Amazon S3 based data warehouse. Apache Spark on Yarn is our tool of choice for data movement and #ETL. Because our storage layer (s3) is decoupled from our processing layer, we are able to scale our compute environment very elastically. We have several semi-permanent, autoscaling Yarn clusters running to serve our data processing needs. While the bulk of our compute infrastructure is dedicated to algorithmic processing, we also implemented Presto for adhoc queries and dashboards.

Beyond data movement and ETL, most #ML centric jobs (e.g. model training and execution) run in a similarly elastic environment as containers running Python and R code on Amazon EC2 Container Service clusters. The execution of batch jobs on top of ECS is managed by Flotilla, a service we built in house and open sourced (see https://github.com/stitchfix/flotilla-os).

At Stitch Fix, algorithmic integrations are pervasive across the business. We have dozens of data products actively integrated systems. That requires serving layer that is robust, agile, flexible, and allows for self-service. Models produced on Flotilla are packaged for deployment in production using Khan, another framework we've developed internally. Khan provides our data scientists the ability to quickly productionize those models they've developed with open source frameworks in Python 3 (e.g. PyTorch, sklearn), by automatically packaging them as Docker containers and deploying to Amazon ECS. This provides our data scientist a one-click method of getting from their algorithms to production. We then integrate those deployments into a service mesh, which allows us to A/B test various implementations in our product.

For more info:

#DataScience #DataStack #Data

See more
Patrick Sun
Software Engineer at Stitch Fix · | 10 upvotes · 60.7K views

As a frontend engineer on the Algorithms & Analytics team at Stitch Fix, I work with data scientists to develop applications and visualizations to help our internal business partners make data-driven decisions. I envisioned a platform that would assist data scientists in the data exploration process, allowing them to visually explore and rapidly iterate through their assumptions, then share their insights with others. This would align with our team's philosophy of having engineers "deploy platforms, services, abstractions, and frameworks that allow the data scientists to conceive of, develop, and deploy their ideas with autonomy", and solve the pain of data exploration.

The final product, code-named Dora, is built with React, Redux.js and Victory, backed by Elasticsearch to enable fast and iterative data exploration, and uses Apache Spark to move data from our Amazon S3 data warehouse into the Elasticsearch cluster.

See more
Undertow logo

Undertow

51
94
5
A flexible performant web server written in java
51
94
+ 1
5
PROS OF UNDERTOW
  • 4
    Performance
  • 1
    Lower footprint
CONS OF UNDERTOW
  • 1
    Smaller community
  • 1
    Less known

related Undertow posts

Spring Boot logo

Spring Boot

26K
23.6K
1K
Create Spring-powered, production-grade applications and services with absolute minimum fuss
26K
23.6K
+ 1
1K
PROS OF SPRING BOOT
  • 149
    Powerful and handy
  • 134
    Easy setup
  • 128
    Java
  • 90
    Spring
  • 85
    Fast
  • 46
    Extensible
  • 37
    Lots of "off the shelf" functionalities
  • 32
    Cloud Solid
  • 26
    Caches well
  • 24
    Productive
  • 24
    Many receipes around for obscure features
  • 23
    Modular
  • 23
    Integrations with most other Java frameworks
  • 22
    Spring ecosystem is great
  • 21
    Auto-configuration
  • 21
    Fast Performance With Microservices
  • 18
    Community
  • 17
    Easy setup, Community Support, Solid for ERP apps
  • 15
    One-stop shop
  • 14
    Easy to parallelize
  • 14
    Cross-platform
  • 13
    Easy setup, good for build erp systems, well documented
  • 13
    Powerful 3rd party libraries and frameworks
  • 12
    Easy setup, Git Integration
  • 5
    It's so easier to start a project on spring
  • 4
    Kotlin
  • 1
    Microservice and Reactive Programming
  • 1
    The ability to integrate with the open source ecosystem
CONS OF SPRING BOOT
  • 23
    Heavy weight
  • 18
    Annotation ceremony
  • 13
    Java
  • 11
    Many config files needed
  • 5
    Reactive
  • 4
    Excellent tools for cloud hosting, since 5.x
  • 1
    Java 😒😒

related Spring Boot posts

Praveen Mooli
Engineering Manager at Taylor and Francis · | 19 upvotes · 4M views

We are in the process of building a modern content platform to deliver our content through various channels. We decided to go with Microservices architecture as we wanted scale. Microservice architecture style is an approach to developing an application as a suite of small independently deployable services built around specific business capabilities. You can gain modularity, extensive parallelism and cost-effective scaling by deploying services across many distributed servers. Microservices modularity facilitates independent updates/deployments, and helps to avoid single point of failure, which can help prevent large-scale outages. We also decided to use Event Driven Architecture pattern which is a popular distributed asynchronous architecture pattern used to produce highly scalable applications. The event-driven architecture is made up of highly decoupled, single-purpose event processing components that asynchronously receive and process events.

To build our #Backend capabilities we decided to use the following: 1. #Microservices - Java with Spring Boot , Node.js with ExpressJS and Python with Flask 2. #Eventsourcingframework - Amazon Kinesis , Amazon Kinesis Firehose , Amazon SNS , Amazon SQS, AWS Lambda 3. #Data - Amazon RDS , Amazon DynamoDB , Amazon S3 , MongoDB Atlas

To build #Webapps we decided to use Angular 2 with RxJS

#Devops - GitHub , Travis CI , Terraform , Docker , Serverless

See more

Is learning Spring and Spring Boot for web apps back-end development is still relevant in 2021? Feel free to share your views with comparison to Django/Node.js/ ExpressJS or other frameworks.

Please share some good beginner resources to start learning about spring/spring boot framework to build the web apps.

See more
Netty logo

Netty

262
408
17
Asynchronous event-driven network application framework
262
408
+ 1
17
PROS OF NETTY
  • 9
    High Performance
  • 4
    Easy to use
  • 3
    Just like it
  • 1
    Easy to learn
CONS OF NETTY
  • 2
    Limited resources to learn from

related Netty posts

Joshua Dean Küpper
CEO at Scrayos UG (haftungsbeschränkt) · | 6 upvotes · 2.1M views

We use GraphQL for the communication between our Minecraft-Proxies/Load-Balancers and our global Minecraft-Orchestration-Service JCOverseer.

This connection proved to be especially challenging, as there were so many available options and very specific requirements and we tried our hardest to put as little complexity into this interface as possible.

Initially we considered designing our very own Netty based Packet-Protocol. While the performance of this approach probably would've been noteworthy, we would have had to write a lot of packets as the individual payloads would differ a lot and for the protocol specification a new project would've been needed, so we scrapped that idea.

Our second idea was to use a combination of Redis Key/Value store (in particular the ability to write whole, complex sets as the values of keys) for existing data, Redis Pub-Sub for the synchronization of new/changed/deleted data and a Vert.x based REST API for the mutation requests of the clients. While this would certainly have been possible, we decided against it, as redis offers no real other data types than strings and typing was important to us.

So we finally settled for GraphQL as it would allow us to define dynamic queries and mutations and additionally has subscriptions in store, so we would only need one component instead of three separate. The proxies register as subscribers to the server changes channel and fetch the current data set in advance. If they need to request changes, this is done through a mutation in GraphQL aswell.

The status of the invidiual servers is fetched through Docker healthchecks and a Docker client in the orchestration service, that subscribes to changed HEALTHINESS values in docker. If a service becomes unhealthy it is unregistered and synchronized through GraphQL. The healthcheck is comparable to a ping packet that expects a response in a given time frame.

See more
Jetty logo

Jetty

472
310
47
An open-source project providing an HTTP server, HTTP client, and javax.servlet container
472
310
+ 1
47
PROS OF JETTY
  • 15
    Lightweight
  • 10
    Embeddable
  • 10
    Very fast
  • 6
    Very thin
  • 6
    Scalable
CONS OF JETTY
  • 0
    Student

related Jetty posts

JavaScript logo

JavaScript

360.8K
274.5K
8.1K
Lightweight, interpreted, object-oriented language with first-class functions
360.8K
274.5K
+ 1
8.1K
PROS OF JAVASCRIPT
  • 1.7K
    Can be used on frontend/backend
  • 1.5K
    It's everywhere
  • 1.2K
    Lots of great frameworks
  • 898
    Fast
  • 746
    Light weight
  • 425
    Flexible
  • 392
    You can't get a device today that doesn't run js
  • 286
    Non-blocking i/o
  • 237
    Ubiquitousness
  • 191
    Expressive
  • 55
    Extended functionality to web pages
  • 49
    Relatively easy language
  • 46
    Executed on the client side
  • 30
    Relatively fast to the end user
  • 25
    Pure Javascript
  • 21
    Functional programming
  • 15
    Async
  • 13
    Full-stack
  • 12
    Future Language of The Web
  • 12
    Setup is easy
  • 12
    Its everywhere
  • 11
    Because I love functions
  • 11
    JavaScript is the New PHP
  • 10
    Like it or not, JS is part of the web standard
  • 9
    Easy
  • 9
    Can be used in backend, frontend and DB
  • 9
    Expansive community
  • 9
    Everyone use it
  • 8
    Easy to hire developers
  • 8
    Most Popular Language in the World
  • 8
    For the good parts
  • 8
    Can be used both as frontend and backend as well
  • 8
    No need to use PHP
  • 8
    Powerful
  • 7
    Evolution of C
  • 7
    Its fun and fast
  • 7
    It's fun
  • 7
    Nice
  • 7
    Versitile
  • 7
    Hard not to use
  • 7
    Popularized Class-Less Architecture & Lambdas
  • 7
    Agile, packages simple to use
  • 7
    Supports lambdas and closures
  • 7
    Love-hate relationship
  • 7
    Photoshop has 3 JS runtimes built in
  • 6
    1.6K Can be used on frontend/backend
  • 6
    Client side JS uses the visitors CPU to save Server Res
  • 6
    It let's me use Babel & Typescript
  • 6
    Easy to make something
  • 6
    Can be used on frontend/backend/Mobile/create PRO Ui
  • 5
    Client processing
  • 5
    What to add
  • 5
    Everywhere
  • 5
    Scope manipulation
  • 5
    Function expressions are useful for callbacks
  • 5
    Stockholm Syndrome
  • 5
    Promise relationship
  • 5
    Clojurescript
  • 4
    Only Programming language on browser
  • 4
    Because it is so simple and lightweight
  • 1
    Easy to learn and test
  • 1
    Easy to understand
  • 1
    Not the best
  • 1
    Subskill #4
  • 1
    Hard to learn
  • 1
    Test2
  • 1
    Test
  • 1
    Easy to learn
  • 0
    Hard 彤
CONS OF JAVASCRIPT
  • 22
    A constant moving target, too much churn
  • 20
    Horribly inconsistent
  • 15
    Javascript is the New PHP
  • 9
    No ability to monitor memory utilitization
  • 8
    Shows Zero output in case of ANY error
  • 7
    Thinks strange results are better than errors
  • 6
    Can be ugly
  • 3
    No GitHub
  • 2
    Slow
  • 0
    HORRIBLE DOCUMENTS, faulty code, repo has bugs

related JavaScript posts

Zach Holman

Oof. I have truly hated JavaScript for a long time. Like, for over twenty years now. Like, since the Clinton administration. It's always been a nightmare to deal with all of the aspects of that silly language.

But wowza, things have changed. Tooling is just way, way better. I'm primarily web-oriented, and using React and Apollo together the past few years really opened my eyes to building rich apps. And I deeply apologize for using the phrase rich apps; I don't think I've ever said such Enterprisey words before.

But yeah, things are different now. I still love Rails, and still use it for a lot of apps I build. But it's that silly rich apps phrase that's the problem. Users have way more comprehensive expectations than they did even five years ago, and the JS community does a good job at building tools and tech that tackle the problems of making heavy, complicated UI and frontend work.

Obviously there's a lot of things happening here, so just saying "JavaScript isn't terrible" might encompass a huge amount of libraries and frameworks. But if you're like me, yeah, give things another shot- I'm somehow not hating on JavaScript anymore and... gulp... I kinda love it.

See more
Conor Myhrvold
Tech Brand Mgr, Office of CTO at Uber · | 44 upvotes · 12.7M views

How Uber developed the open source, end-to-end distributed tracing Jaeger , now a CNCF project:

Distributed tracing is quickly becoming a must-have component in the tools that organizations use to monitor their complex, microservice-based architectures. At Uber, our open source distributed tracing system Jaeger saw large-scale internal adoption throughout 2016, integrated into hundreds of microservices and now recording thousands of traces every second.

Here is the story of how we got here, from investigating off-the-shelf solutions like Zipkin, to why we switched from pull to push architecture, and how distributed tracing will continue to evolve:

https://eng.uber.com/distributed-tracing/

(GitHub Pages : https://www.jaegertracing.io/, GitHub: https://github.com/jaegertracing/jaeger)

Bindings/Operator: Python Java Node.js Go C++ Kubernetes JavaScript OpenShift C# Apache Spark

See more
Python logo

Python

244.8K
199.9K
6.9K
A clear and powerful object-oriented programming language, comparable to Perl, Ruby, Scheme, or Java.
244.8K
199.9K
+ 1
6.9K
PROS OF PYTHON
  • 1.2K
    Great libraries
  • 962
    Readable code
  • 847
    Beautiful code
  • 788
    Rapid development
  • 690
    Large community
  • 438
    Open source
  • 393
    Elegant
  • 282
    Great community
  • 272
    Object oriented
  • 220
    Dynamic typing
  • 77
    Great standard library
  • 60
    Very fast
  • 55
    Functional programming
  • 49
    Easy to learn
  • 45
    Scientific computing
  • 35
    Great documentation
  • 29
    Productivity
  • 28
    Easy to read
  • 28
    Matlab alternative
  • 24
    Simple is better than complex
  • 20
    It's the way I think
  • 19
    Imperative
  • 18
    Free
  • 18
    Very programmer and non-programmer friendly
  • 17
    Powerfull language
  • 17
    Machine learning support
  • 16
    Fast and simple
  • 14
    Scripting
  • 12
    Explicit is better than implicit
  • 11
    Ease of development
  • 10
    Clear and easy and powerfull
  • 9
    Unlimited power
  • 8
    It's lean and fun to code
  • 8
    Import antigravity
  • 7
    Print "life is short, use python"
  • 7
    Python has great libraries for data processing
  • 6
    Although practicality beats purity
  • 6
    Now is better than never
  • 6
    Great for tooling
  • 6
    Readability counts
  • 6
    Rapid Prototyping
  • 6
    I love snakes
  • 6
    Flat is better than nested
  • 6
    Fast coding and good for competitions
  • 6
    There should be one-- and preferably only one --obvious
  • 6
    High Documented language
  • 5
    Great for analytics
  • 5
    Lists, tuples, dictionaries
  • 4
    Easy to learn and use
  • 4
    Simple and easy to learn
  • 4
    Easy to setup and run smooth
  • 4
    Web scraping
  • 4
    CG industry needs
  • 4
    Socially engaged community
  • 4
    Complex is better than complicated
  • 4
    Multiple Inheritence
  • 4
    Beautiful is better than ugly
  • 4
    Plotting
  • 3
    Many types of collections
  • 3
    Flexible and easy
  • 3
    It is Very easy , simple and will you be love programmi
  • 3
    If the implementation is hard to explain, it's a bad id
  • 3
    Special cases aren't special enough to break the rules
  • 3
    Pip install everything
  • 3
    List comprehensions
  • 3
    No cruft
  • 3
    Generators
  • 3
    Import this
  • 3
    If the implementation is easy to explain, it may be a g
  • 2
    Can understand easily who are new to programming
  • 2
    Batteries included
  • 2
    Securit
  • 2
    Good for hacking
  • 2
    Better outcome
  • 2
    Only one way to do it
  • 2
    Because of Netflix
  • 2
    A-to-Z
  • 2
    Should START with this but not STICK with This
  • 2
    Powerful language for AI
  • 1
    Automation friendly
  • 1
    Sexy af
  • 1
    Slow
  • 1
    Procedural programming
  • 0
    Ni
  • 0
    Powerful
  • 0
    Keep it simple
CONS OF PYTHON
  • 53
    Still divided between python 2 and python 3
  • 28
    Performance impact
  • 26
    Poor syntax for anonymous functions
  • 22
    GIL
  • 19
    Package management is a mess
  • 14
    Too imperative-oriented
  • 12
    Hard to understand
  • 12
    Dynamic typing
  • 12
    Very slow
  • 8
    Indentations matter a lot
  • 8
    Not everything is expression
  • 7
    Incredibly slow
  • 7
    Explicit self parameter in methods
  • 6
    Requires C functions for dynamic modules
  • 6
    Poor DSL capabilities
  • 6
    No anonymous functions
  • 5
    Fake object-oriented programming
  • 5
    Threading
  • 5
    The "lisp style" whitespaces
  • 5
    Official documentation is unclear.
  • 5
    Hard to obfuscate
  • 5
    Circular import
  • 4
    Lack of Syntax Sugar leads to "the pyramid of doom"
  • 4
    The benevolent-dictator-for-life quit
  • 4
    Not suitable for autocomplete
  • 2
    Meta classes
  • 1
    Training wheels (forced indentation)

related Python posts

Conor Myhrvold
Tech Brand Mgr, Office of CTO at Uber · | 44 upvotes · 12.7M views

How Uber developed the open source, end-to-end distributed tracing Jaeger , now a CNCF project:

Distributed tracing is quickly becoming a must-have component in the tools that organizations use to monitor their complex, microservice-based architectures. At Uber, our open source distributed tracing system Jaeger saw large-scale internal adoption throughout 2016, integrated into hundreds of microservices and now recording thousands of traces every second.

Here is the story of how we got here, from investigating off-the-shelf solutions like Zipkin, to why we switched from pull to push architecture, and how distributed tracing will continue to evolve:

https://eng.uber.com/distributed-tracing/

(GitHub Pages : https://www.jaegertracing.io/, GitHub: https://github.com/jaegertracing/jaeger)

Bindings/Operator: Python Java Node.js Go C++ Kubernetes JavaScript OpenShift C# Apache Spark

See more
Nick Parsons
Building cool things on the internet 🛠️ at Stream · | 35 upvotes · 4.3M views

Winds 2.0 is an open source Podcast/RSS reader developed by Stream with a core goal to enable a wide range of developers to contribute.

We chose JavaScript because nearly every developer knows or can, at the very least, read JavaScript. With ES6 and Node.js v10.x.x, it’s become a very capable language. Async/Await is powerful and easy to use (Async/Await vs Promises). Babel allows us to experiment with next-generation JavaScript (features that are not in the official JavaScript spec yet). Yarn allows us to consistently install packages quickly (and is filled with tons of new tricks)

We’re using JavaScript for everything – both front and backend. Most of our team is experienced with Go and Python, so Node was not an obvious choice for this app.

Sure... there will be haters who refuse to acknowledge that there is anything remotely positive about JavaScript (there are even rants on Hacker News about Node.js); however, without writing completely in JavaScript, we would not have seen the results we did.

#FrameworksFullStack #Languages

See more