StackShareStackShare
Follow on
StackShare

Discover and share technology stacks from companies around the world.

Follow on

© 2025 StackShare. All rights reserved.

Product

  • Stacks
  • Tools
  • Feed

Company

  • About
  • Contact

Legal

  • Privacy Policy
  • Terms of Service
  1. Stackups
  2. Application & Data
  3. NoSQL Databases
  4. NOSQL Database As A Service
  5. Amazon SimpleDB vs Presto

Amazon SimpleDB vs Presto

OverviewDecisionsComparisonAlternatives

Overview

Amazon SimpleDB
Amazon SimpleDB
Stacks21
Followers50
Votes0
Presto
Presto
Stacks394
Followers1.0K
Votes66

Amazon SimpleDB vs Presto: What are the differences?

What is Amazon SimpleDB? Highly available and flexible non-relational data store. Developers simply store and query data items via web services requests and Amazon SimpleDB does the rest. Behind the scenes, Amazon SimpleDB creates and manages multiple geographically distributed replicas of your data automatically to enable high availability and data durability. Amazon SimpleDB provides a simple web services interface to create and store multiple data sets, query your data easily, and return the results. Your data is automatically indexed, making it easy to quickly find the information that you need. There is no need to pre-define a schema or change a schema if new data is added later. And scale-out is as simple as creating new domains, rather than building out new servers.

What is Presto? Distributed SQL Query Engine for Big Data. Presto is an open source distributed SQL query engine for running interactive analytic queries against data sources of all sizes ranging from gigabytes to petabytes.

Amazon SimpleDB and Presto are primarily classified as "NoSQL Database as a Service" and "Big Data" tools respectively.

Presto is an open source tool with 9.3K GitHub stars and 3.15K GitHub forks. Here's a link to Presto's open source repository on GitHub.

Share your Stack

Help developers discover the tools you use. Get visibility for your team's tech choices and contribute to the community's knowledge.

View Docs
CLI (Node.js)
or
Manual

Advice on Amazon SimpleDB, Presto

Ashish
Ashish

Tech Lead, Big Data Platform at Pinterest

Nov 27, 2019

Needs adviceonApache HiveApache HivePrestoPrestoAmazon EC2Amazon EC2

To provide employees with the critical need of interactive querying, we’ve worked with Presto, an open-source distributed SQL query engine, over the years. Operating Presto at Pinterest’s scale has involved resolving quite a few challenges like, supporting deeply nested and huge thrift schemas, slow/ bad worker detection and remediation, auto-scaling cluster, graceful cluster shutdown and impersonation support for ldap authenticator.

Our infrastructure is built on top of Amazon EC2 and we leverage Amazon S3 for storing our data. This separates compute and storage layers, and allows multiple compute clusters to share the S3 data.

We have hundreds of petabytes of data and tens of thousands of Apache Hive tables. Our Presto clusters are comprised of a fleet of 450 r4.8xl EC2 instances. Presto clusters together have over 100 TBs of memory and 14K vcpu cores. Within Pinterest, we have close to more than 1,000 monthly active users (out of total 1,600+ Pinterest employees) using Presto, who run about 400K queries on these clusters per month.

Each query submitted to Presto cluster is logged to a Kafka topic via Singer. Singer is a logging agent built at Pinterest and we talked about it in a previous post. Each query is logged when it is submitted and when it finishes. When a Presto cluster crashes, we will have query submitted events without corresponding query finished events. These events enable us to capture the effect of cluster crashes over time.

Each Presto cluster at Pinterest has workers on a mix of dedicated AWS EC2 instances and Kubernetes pods. Kubernetes platform provides us with the capability to add and remove workers from a Presto cluster very quickly. The best-case latency on bringing up a new worker on Kubernetes is less than a minute. However, when the Kubernetes cluster itself is out of resources and needs to scale up, it can take up to ten minutes. Some other advantages of deploying on Kubernetes platform is that our Presto deployment becomes agnostic of cloud vendor, instance types, OS, etc.

#BigData #AWS #DataScience #DataEngineering

3.72M views3.72M
Comments
Karthik
Karthik

CPO at Cantiz

Nov 5, 2019

Decided

The platform deals with time series data from sensors aggregated against things( event data that originates at periodic intervals). We use Cassandra as our distributed database to store time series data. Aggregated data insights from Cassandra is delivered as web API for consumption from other applications. Presto as a distributed sql querying engine, can provide a faster execution time provided the queries are tuned for proper distribution across the cluster. Another objective that we had was to combine Cassandra table data with other business data from RDBMS or other big data systems where presto through its connector architecture would have opened up a whole lot of options for us.

225k views225k
Comments

Detailed Comparison

Amazon SimpleDB
Amazon SimpleDB
Presto
Presto

Developers simply store and query data items via web services requests and Amazon SimpleDB does the rest. Behind the scenes, Amazon SimpleDB creates and manages multiple geographically distributed replicas of your data automatically to enable high availability and data durability. Amazon SimpleDB provides a simple web services interface to create and store multiple data sets, query your data easily, and return the results. Your data is automatically indexed, making it easy to quickly find the information that you need. There is no need to pre-define a schema or change a schema if new data is added later. And scale-out is as simple as creating new domains, rather than building out new servers.

Distributed SQL Query Engine for Big Data

<div>Amazon SimpleDB automatically manages infrastructure provisioning, hardware and software maintenance, replication and indexing of data items, and performance tuning.;Amazon SimpleDB automatically creates multiple geographically distributed copies of each data item you store.;You can also choose between consistent or eventually consistent read requests, gaining the flexibility to match read performance (latency and throughput) and consistency requirements to the demands of your application, or even disparate parts within your application.;A table in Amazon SimpleDB has a strict storage limitation of 10 GB and is limited in the request capacity it can achieve (typically under 25 writes/second). It is up to you to manage the partitioning and re-partitioning of your data over additional SimpleDB tables if you need additional scale.</div>
-
Statistics
Stacks
21
Stacks
394
Followers
50
Followers
1.0K
Votes
0
Votes
66
Pros & Cons
No community feedback yet
Pros
  • 18
    Works directly on files in s3 (no ETL)
  • 13
    Open-source
  • 12
    Join multiple databases
  • 10
    Scalable
  • 7
    Gets ready in minutes
Integrations
No integrations available
PostgreSQL
PostgreSQL
Kafka
Kafka
Redis
Redis
MySQL
MySQL
Hadoop
Hadoop
Microsoft SQL Server
Microsoft SQL Server

What are some alternatives to Amazon SimpleDB, Presto?

Amazon DynamoDB

Amazon DynamoDB

With it , you can offload the administrative burden of operating and scaling a highly available distributed database cluster, while paying a low price for only what you use.

Apache Spark

Apache Spark

Spark is a fast and general processing engine compatible with Hadoop data. It can run in Hadoop clusters through YARN or Spark's standalone mode, and it can process data in HDFS, HBase, Cassandra, Hive, and any Hadoop InputFormat. It is designed to perform both batch processing (similar to MapReduce) and new workloads like streaming, interactive queries, and machine learning.

Azure Cosmos DB

Azure Cosmos DB

Azure DocumentDB is a fully managed NoSQL database service built for fast and predictable performance, high availability, elastic scaling, global distribution, and ease of development.

Cloud Firestore

Cloud Firestore

Cloud Firestore is a NoSQL document database that lets you easily store, sync, and query data for your mobile and web apps - at global scale.

Amazon Athena

Amazon Athena

Amazon Athena is an interactive query service that makes it easy to analyze data in Amazon S3 using standard SQL. Athena is serverless, so there is no infrastructure to manage, and you pay only for the queries that you run.

Apache Flink

Apache Flink

Apache Flink is an open source system for fast and versatile data analytics in clusters. Flink supports batch and streaming analytics, in one system. Analytical programs can be written in concise and elegant APIs in Java and Scala.

lakeFS

lakeFS

It is an open-source data version control system for data lakes. It provides a “Git for data” platform enabling you to implement best practices from software engineering on your data lake, including branching and merging, CI/CD, and production-like dev/test environments.

Druid

Druid

Druid is a distributed, column-oriented, real-time analytics data store that is commonly used to power exploratory dashboards in multi-tenant environments. Druid excels as a data warehousing solution for fast aggregate queries on petabyte sized data sets. Druid supports a variety of flexible filters, exact calculations, approximate algorithms, and other useful calculations.

Cloudant

Cloudant

Cloudant’s distributed database as a service (DBaaS) allows developers of fast-growing web and mobile apps to focus on building and improving their products, instead of worrying about scaling and managing databases on their own.

Google Cloud Bigtable

Google Cloud Bigtable

Google Cloud Bigtable offers you a fast, fully managed, massively scalable NoSQL database service that's ideal for web, mobile, and Internet of Things applications requiring terabytes to petabytes of data. Unlike comparable market offerings, Cloud Bigtable doesn't require you to sacrifice speed, scale, or cost efficiency when your applications grow. Cloud Bigtable has been battle-tested at Google for more than 10 years—it's the database driving major applications such as Google Analytics and Gmail.

Related Comparisons

Bootstrap
Materialize

Bootstrap vs Materialize

Laravel
Django

Django vs Laravel vs Node.js

Bootstrap
Foundation

Bootstrap vs Foundation vs Material UI

Node.js
Spring Boot

Node.js vs Spring-Boot

Liquibase
Flyway

Flyway vs Liquibase