StackShareStackShare
Follow on
StackShare

Discover and share technology stacks from companies around the world.

Follow on

© 2025 StackShare. All rights reserved.

Product

  • Stacks
  • Tools
  • Feed

Company

  • About
  • Contact

Legal

  • Privacy Policy
  • Terms of Service
  1. Stackups
  2. Application & Data
  3. Databases
  4. Big Data As A Service
  5. Dremio vs Stitch

Dremio vs Stitch

OverviewDecisionsComparisonAlternatives

Overview

Stitch
Stitch
Stacks150
Followers150
Votes12
Dremio
Dremio
Stacks116
Followers348
Votes8

Stitch vs Dremio: What are the differences?

What is Stitch? All your data. In your data warehouse. In minutes. Stitch is a simple, powerful ETL service built for software developers. Stitch evolved out of RJMetrics, a widely used business intelligence platform. When RJMetrics was acquired by Magento in 2016, Stitch was launched as its own company.

What is Dremio? Self-service data for everyone. It is a data-as-a-service platform that empowers users to discover, curate, accelerate, and share any data at any time, regardless of location, volume, or structure. Modern data is managed by a wide range of technologies, including relational databases, NoSQL datastores, file systems, Hadoop, and others.

Stitch and Dremio can be primarily classified as "Big Data as a Service" tools.

Some of the features offered by Stitch are:

  • Connect to your ecosystem of data sources - UI allows you to configure your data pipeline in a way that balances data freshness with cost and production database load
  • Replication frequency - Choose full or incremental loads, and determine how often you want them to run - from every minute, to once every 24 hours
  • Data selection - Configure exactly what data gets replicated by selecting the tables, fields, collections, and endpoints you want in your warehouse

On the other hand, Dremio provides the following key features:

  • Democratize all your data
  • Make your data engineers more productive
  • Accelerate your favorite tools

Share your Stack

Help developers discover the tools you use. Get visibility for your team's tech choices and contribute to the community's knowledge.

View Docs
CLI (Node.js)
or
Manual

Advice on Stitch, Dremio

karunakaran
karunakaran

Consultant

Jun 26, 2020

Needs advice

I am trying to build a data lake by pulling data from multiple data sources ( custom-built tools, excel files, CSV files, etc) and use the data lake to generate dashboards.

My question is which is the best tool to do the following:

  1. Create pipelines to ingest the data from multiple sources into the data lake
  2. Help me in aggregating and filtering data available in the data lake.
  3. Create new reports by combining different data elements from the data lake.

I need to use only open-source tools for this activity.

I appreciate your valuable inputs and suggestions. Thanks in Advance.

80.5k views80.5k
Comments
datocrats-org
datocrats-org

Jul 29, 2020

Needs adviceonAmazon EC2Amazon EC2TableauTableauPowerBIPowerBI

We need to perform ETL from several databases into a data warehouse or data lake. We want to

  • keep raw and transformed data available to users to draft their own queries efficiently
  • give users the ability to give custom permissions and SSO
  • move between open-source on-premises development and cloud-based production environments

We want to use inexpensive Amazon EC2 instances only on medium-sized data set 16GB to 32GB feeding into Tableau Server or PowerBI for reporting and data analysis purposes.

319k views319k
Comments

Detailed Comparison

Stitch
Stitch
Dremio
Dremio

Stitch is a simple, powerful ETL service built for software developers. Stitch evolved out of RJMetrics, a widely used business intelligence platform. When RJMetrics was acquired by Magento in 2016, Stitch was launched as its own company.

Dremio—the data lake engine, operationalizes your data lake storage and speeds your analytics processes with a high-performance and high-efficiency query engine while also democratizing data access for data scientists and analysts.

Connect to your ecosystem of data sources - UI allows you to configure your data pipeline in a way that balances data freshness with cost and production database load;Replication frequency - Choose full or incremental loads, and determine how often you want them to run - from every minute, to once every 24 hours; Data selection - Configure exactly what data gets replicated by selecting the tables, fields, collections, and endpoints you want in your warehouse;API - With the Stitch API, you're free to replicate data from any source. Its REST API supports JSON or Transit, and recognizes your schema based on the data you send.;Usage dashboard - Access our simple UI to check usage data like the number of rows synced by data source, and how you're pacing toward your monthly row limit;Email alerts - Receive immediate notifications when Stitch encounters issues like expired credentials, integration updates, or warehouse errors preventing loads;Warehouse views - By using the freshness data provided by Stitch, you can build a simple audit table to track replication frequency;Scalable - Highly Scalable Stitch handles all data volumes with no data caps, allowing you to grow without the possibility of an ETL failure;Transform nested JSON - Stitch provides automatic detection and normalization of nested document structures into relational schemas;Complete historical data - On your first sync, Stitch replicates all available historical data from your database and SaaS tools. No database dump necessary.
Democratize all your data; Make your data engineers more productive; Accelerate your favorite tools; Self service, for everybody
Statistics
Stacks
150
Stacks
116
Followers
150
Followers
348
Votes
12
Votes
8
Pros & Cons
Pros
  • 8
    3 minutes to set up
  • 4
    Super simple, great support
Pros
  • 3
    Nice GUI to enable more people to work with Data
  • 2
    Connect NoSQL databases with RDBMS
  • 2
    Easier to Deploy
  • 1
    Free
Cons
  • 1
    Works only on Iceberg structured data
Integrations
Stripe
Stripe
Twilio SendGrid
Twilio SendGrid
Zendesk
Zendesk
MongoDB
MongoDB
Marketo
Marketo
Recurly
Recurly
GitLab
GitLab
Zapier
Zapier
FreshDesk
FreshDesk
Harvest
Harvest
Amazon S3
Amazon S3
Python
Python
Tableau
Tableau
Azure Database for PostgreSQL
Azure Database for PostgreSQL
Qlik Sense
Qlik Sense
PowerBI
PowerBI

What are some alternatives to Stitch, Dremio?

Google BigQuery

Google BigQuery

Run super-fast, SQL-like queries against terabytes of data in seconds, using the processing power of Google's infrastructure. Load data with ease. Bulk load your data using Google Cloud Storage or stream it in. Easy access. Access BigQuery by using a browser tool, a command-line tool, or by making calls to the BigQuery REST API with client libraries such as Java, PHP or Python.

Apache Spark

Apache Spark

Spark is a fast and general processing engine compatible with Hadoop data. It can run in Hadoop clusters through YARN or Spark's standalone mode, and it can process data in HDFS, HBase, Cassandra, Hive, and any Hadoop InputFormat. It is designed to perform both batch processing (similar to MapReduce) and new workloads like streaming, interactive queries, and machine learning.

Amazon Redshift

Amazon Redshift

It is optimized for data sets ranging from a few hundred gigabytes to a petabyte or more and costs less than $1,000 per terabyte per year, a tenth the cost of most traditional data warehousing solutions.

Qubole

Qubole

Qubole is a cloud based service that makes big data easy for analysts and data engineers.

Presto

Presto

Distributed SQL Query Engine for Big Data

Amazon EMR

Amazon EMR

It is used in a variety of applications, including log analysis, data warehousing, machine learning, financial analysis, scientific simulation, and bioinformatics.

Amazon Athena

Amazon Athena

Amazon Athena is an interactive query service that makes it easy to analyze data in Amazon S3 using standard SQL. Athena is serverless, so there is no infrastructure to manage, and you pay only for the queries that you run.

Apache Flink

Apache Flink

Apache Flink is an open source system for fast and versatile data analytics in clusters. Flink supports batch and streaming analytics, in one system. Analytical programs can be written in concise and elegant APIs in Java and Scala.

lakeFS

lakeFS

It is an open-source data version control system for data lakes. It provides a “Git for data” platform enabling you to implement best practices from software engineering on your data lake, including branching and merging, CI/CD, and production-like dev/test environments.

Druid

Druid

Druid is a distributed, column-oriented, real-time analytics data store that is commonly used to power exploratory dashboards in multi-tenant environments. Druid excels as a data warehousing solution for fast aggregate queries on petabyte sized data sets. Druid supports a variety of flexible filters, exact calculations, approximate algorithms, and other useful calculations.

Related Comparisons

Bootstrap
Materialize

Bootstrap vs Materialize

Laravel
Django

Django vs Laravel vs Node.js

Bootstrap
Foundation

Bootstrap vs Foundation vs Material UI

Node.js
Spring Boot

Node.js vs Spring-Boot

Liquibase
Flyway

Flyway vs Liquibase