Elasticsearch vs Lucene

Need advice about which tool to choose?Ask the StackShare community!

Elasticsearch

26.2K
19.8K
+ 1
1.6K
Lucene

151
194
+ 1
0
Add tool

Elasticsearch vs Lucene: What are the differences?

What is Elasticsearch? Open Source, Distributed, RESTful Search Engine. Elasticsearch is a distributed, RESTful search and analytics engine capable of storing data and searching it in near real time. Elasticsearch, Kibana, Beats and Logstash are the Elastic Stack (sometimes called the ELK Stack).

What is Lucene? A high-performance, full-featured text search engine library written entirely in Java. Lucene Core, our flagship sub-project, provides Java-based indexing and search technology, as well as spellchecking, hit highlighting and advanced analysis/tokenization capabilities.

Elasticsearch belongs to "Search as a Service" category of the tech stack, while Lucene can be primarily classified under "Search Engines".

Some of the features offered by Elasticsearch are:

  • Distributed and Highly Available Search Engine.
  • Multi Tenant with Multi Types.
  • Various set of APIs including RESTful

On the other hand, Lucene provides the following key features:

  • over 150GB/hour on modern hardware
  • small RAM requirements -- only 1MB heap
  • incremental indexing as fast as batch indexing

Elasticsearch is an open source tool with 42.4K GitHub stars and 14.2K GitHub forks. Here's a link to Elasticsearch's open source repository on GitHub.

Uber Technologies, Instacart, and Slack are some of the popular companies that use Elasticsearch, whereas Lucene is used by Twitter, Slack, and Evernote. Elasticsearch has a broader approval, being mentioned in 2002 company stacks & 977 developers stacks; compared to Lucene, which is listed in 33 company stacks and 9 developer stacks.

Advice on Elasticsearch and Lucene
Rana Usman Shahid
Chief Technology Officer at TechAvanza · | 5 upvotes · 174K views
Needs advice
on
FirebaseFirebaseElasticsearchElasticsearch
and
AlgoliaAlgolia

Hey everybody! (1) I am developing an android application. I have data of around 3 million record (less than a TB). I want to save that data in the cloud. Which company provides the best cloud database services that would suit my scenario? It should be secured, long term useable, and provide better services. I decided to use Firebase Realtime database. Should I stick with Firebase or are there any other companies that provide a better service?

(2) I have the functionality of searching data in my app. Same data (less than a TB). Which search solution should I use in this case? I found Elasticsearch and Algolia search. It should be secure and fast. If any other company provides better services than these, please feel free to suggest them.

Thank you!

See more
Replies (2)
Josh Dzielak
Co-Founder & CTO at Orbit · | 7 upvotes · 132.4K views
Recommends
AlgoliaAlgolia

Hi Rana, good question! From my Firebase experience, 3 million records is not too big at all, as long as the cost is within reason for you. With Firebase you will be able to access the data from anywhere, including an android app, and implement fine-grained security with JSON rules. The real-time-ness works perfectly. As a fully managed database, Firebase really takes care of everything. The only thing to watch out for is if you need complex query patterns - Firestore (also in the Firebase family) can be a better fit there.

To answer question 2: the right answer will depend on what's most important to you. Algolia is like Firebase is that it is fully-managed, very easy to set up, and has great SDKs for Android. Algolia is really a full-stack search solution in this case, and it is easy to connect with your Firebase data. Bear in mind that Algolia does cost money, so you'll want to make sure the cost is okay for you, but you will save a lot of engineering time and never have to worry about scale. The search-as-you-type performance with Algolia is flawless, as that is a primary aspect of its design. Elasticsearch can store tons of data and has all the flexibility, is hosted for cheap by many cloud services, and has many users. If you haven't done a lot with search before, the learning curve is higher than Algolia for getting the results ranked properly, and there is another learning curve if you want to do the DevOps part yourself. Both are very good platforms for search, Algolia shines when buliding your app is the most important and you don't want to spend many engineering hours, Elasticsearch shines when you have a lot of data and don't mind learning how to run and optimize it.

See more
Mike Endale
Recommends
Cloud FirestoreCloud Firestore

Rana - we use Cloud Firestore at our startup. It handles many million records without any issues. It provides you the same set of features that the Firebase Realtime Database provides on top of the indexing and security trims. The only thing to watch out for is to make sure your Cloud Functions have proper exception handling and there are no infinite loop in the code. This will be too costly if not caught quickly.

For search; Algolia is a great option, but cost is a real consideration. Indexing large number of records can be cost prohibitive for most projects. Elasticsearch is a solid alternative, but requires a little additional work to configure and maintain if you want to self-host.

Hope this helps.

See more
Get Advice from developers at your company using Private StackShare. Sign up for Private StackShare.
Learn More
Pros of Elasticsearch
Pros of Lucene
  • 321
    Powerful api
  • 311
    Great search engine
  • 231
    Open source
  • 213
    Restful
  • 200
    Near real-time search
  • 96
    Free
  • 83
    Search everything
  • 54
    Easy to get started
  • 45
    Analytics
  • 26
    Distributed
  • 6
    Fast search
  • 5
    More than a search engine
  • 3
    Great docs
  • 3
    Awesome, great tool
  • 3
    Easy to scale
  • 2
    Document Store
  • 2
    Nosql DB
  • 2
    Great piece of software
  • 2
    Great customer support
  • 2
    Intuitive API
  • 2
    Fast
  • 2
    Easy setup
  • 2
    Highly Available
  • 1
    Not stable
  • 1
    Scalability
  • 1
    Open
  • 1
    Reliable
  • 1
    Github
  • 1
    Elaticsearch
  • 1
    Actively developing
  • 1
    Responsive maintainers on GitHub
  • 1
    Ecosystem
  • 1
    Easy to get hot data
  • 1
    Potato
  • 0
    Community
    Be the first to leave a pro

    Sign up to add or upvote prosMake informed product decisions

    Cons of Elasticsearch
    Cons of Lucene
    • 6
      Resource hungry
    • 6
      Diffecult to get started
    • 5
      Expensive
    • 3
      Hard to keep stable at large scale
      Be the first to leave a con

      Sign up to add or upvote consMake informed product decisions

      - No public GitHub repository available -

      What is Elasticsearch?

      Elasticsearch is a distributed, RESTful search and analytics engine capable of storing data and searching it in near real time. Elasticsearch, Kibana, Beats and Logstash are the Elastic Stack (sometimes called the ELK Stack).

      What is Lucene?

      Lucene Core, our flagship sub-project, provides Java-based indexing and search technology, as well as spellchecking, hit highlighting and advanced analysis/tokenization capabilities.

      Need advice about which tool to choose?Ask the StackShare community!

      What companies use Elasticsearch?
      What companies use Lucene?
      See which teams inside your own company are using Elasticsearch or Lucene.
      Sign up for Private StackShareLearn More

      Sign up to get full access to all the companiesMake informed product decisions

      What tools integrate with Elasticsearch?
      What tools integrate with Lucene?

      Sign up to get full access to all the tool integrationsMake informed product decisions

      Blog Posts

      May 21 2019 at 12:20AM

      Elastic

      ElasticsearchKibanaLogstash+4
      12
      3305
      GitHubPythonReact+42
      47
      39408
      GitHubPythonNode.js+47
      50
      69464
      What are some alternatives to Elasticsearch and Lucene?
      Datadog
      Datadog is the leading service for cloud-scale monitoring. It is used by IT, operations, and development teams who build and operate applications that run on dynamic or hybrid cloud infrastructure. Start monitoring in minutes with Datadog!
      Solr
      Solr is the popular, blazing fast open source enterprise search platform from the Apache Lucene project. Its major features include powerful full-text search, hit highlighting, faceted search, near real-time indexing, dynamic clustering, database integration, rich document (e.g., Word, PDF) handling, and geospatial search. Solr is highly reliable, scalable and fault tolerant, providing distributed indexing, replication and load-balanced querying, automated failover and recovery, centralized configuration and more. Solr powers the search and navigation features of many of the world's largest internet sites.
      MongoDB
      MongoDB stores data in JSON-like documents that can vary in structure, offering a dynamic, flexible schema. MongoDB was also designed for high availability and scalability, with built-in replication and auto-sharding.
      Algolia
      Our mission is to make you a search expert. Push data to our API to make it searchable in real time. Build your dream front end with one of our web or mobile UI libraries. Tune relevance and get analytics right from your dashboard.
      Splunk
      It provides the leading platform for Operational Intelligence. Customers use it to search, monitor, analyze and visualize machine data.
      See all alternatives