Need advice about which tool to choose?Ask the StackShare community!
Elasticsearch vs Lucene: What are the differences?
Introduction
Elasticsearch and Lucene are both open-source search engines widely used in information retrieval applications. While they share similarities, they also have key differences that set them apart.
Data Model: Elasticsearch is a document-oriented search engine, while Lucene is a low-level library that provides access to inverted index structures. In Elasticsearch, data is stored as JSON documents, allowing for flexible and schema-less indexing. On the other hand, Lucene operates at a lower level, providing APIs to index and search individual fields within a document.
Scalability and Distribution: Elasticsearch is designed to be highly scalable and distributed from the ground up. It allows for horizontal scaling by dividing the data across multiple nodes in a cluster, enabling efficient retrieval and processing even as the amount of data grows. Lucene, on the other hand, is a Java library that focuses on providing powerful indexing and search capabilities within a single machine.
Query Language: Elasticsearch offers a RESTful API with its own query language called Query DSL. This language allows users to perform complex searches, aggregations, and statistical calculations on their data. In contrast, Lucene provides a programmatic API to perform searches, which requires writing code to construct queries and process search results.
Full-Text Search vs. Indexing: Elasticsearch provides full-text search capabilities out-of-the-box, allowing users to perform efficient search operations on large volumes of text. Lucene primarily focuses on indexing and retrieval tasks and can be used as a building block for implementing search functionality. While Lucene can be utilized for full-text search, additional code and configurations are required.
Real-Time Search: Elasticsearch offers real-time search capabilities, meaning that documents are indexed and made available for search almost immediately after they are added or modified. Lucene, being a lower-level library, does not provide this real-time functionality by default and requires additional effort to achieve similar capabilities.
Community and Ecosystem: Elasticsearch has a large and active community, providing a wide range of plugins and integrations with other tools and frameworks. It has gained popularity as a versatile and scalable search and analytics platform. Lucene, being the underlying library for Elasticsearch, also has an active community but is more focused on providing low-level indexing and search capabilities.
In summary, Elasticsearch provides a distributed, scalable, and document-oriented search engine with its own query language, while Lucene is a powerful Java library that offers low-level indexing and search capabilities within a single machine.
Hey everybody! (1) I am developing an android application. I have data of around 3 million record (less than a TB). I want to save that data in the cloud. Which company provides the best cloud database services that would suit my scenario? It should be secured, long term useable, and provide better services. I decided to use Firebase Realtime database. Should I stick with Firebase or are there any other companies that provide a better service?
(2) I have the functionality of searching data in my app. Same data (less than a TB). Which search solution should I use in this case? I found Elasticsearch and Algolia search. It should be secure and fast. If any other company provides better services than these, please feel free to suggest them.
Thank you!
Hi Rana, good question! From my Firebase experience, 3 million records is not too big at all, as long as the cost is within reason for you. With Firebase you will be able to access the data from anywhere, including an android app, and implement fine-grained security with JSON rules. The real-time-ness works perfectly. As a fully managed database, Firebase really takes care of everything. The only thing to watch out for is if you need complex query patterns - Firestore (also in the Firebase family) can be a better fit there.
To answer question 2: the right answer will depend on what's most important to you. Algolia is like Firebase is that it is fully-managed, very easy to set up, and has great SDKs for Android. Algolia is really a full-stack search solution in this case, and it is easy to connect with your Firebase data. Bear in mind that Algolia does cost money, so you'll want to make sure the cost is okay for you, but you will save a lot of engineering time and never have to worry about scale. The search-as-you-type performance with Algolia is flawless, as that is a primary aspect of its design. Elasticsearch can store tons of data and has all the flexibility, is hosted for cheap by many cloud services, and has many users. If you haven't done a lot with search before, the learning curve is higher than Algolia for getting the results ranked properly, and there is another learning curve if you want to do the DevOps part yourself. Both are very good platforms for search, Algolia shines when buliding your app is the most important and you don't want to spend many engineering hours, Elasticsearch shines when you have a lot of data and don't mind learning how to run and optimize it.
Rana - we use Cloud Firestore at our startup. It handles many million records without any issues. It provides you the same set of features that the Firebase Realtime Database provides on top of the indexing and security trims. The only thing to watch out for is to make sure your Cloud Functions have proper exception handling and there are no infinite loop in the code. This will be too costly if not caught quickly.
For search; Algolia is a great option, but cost is a real consideration. Indexing large number of records can be cost prohibitive for most projects. Elasticsearch is a solid alternative, but requires a little additional work to configure and maintain if you want to self-host.
Hope this helps.
Pros of Elasticsearch
- Powerful api328
- Great search engine315
- Open source231
- Restful214
- Near real-time search200
- Free98
- Search everything85
- Easy to get started54
- Analytics45
- Distributed26
- Fast search6
- More than a search engine5
- Great docs4
- Awesome, great tool4
- Highly Available3
- Easy to scale3
- Potato2
- Document Store2
- Great customer support2
- Intuitive API2
- Nosql DB2
- Great piece of software2
- Reliable2
- Fast2
- Easy setup2
- Open1
- Easy to get hot data1
- Github1
- Elaticsearch1
- Actively developing1
- Responsive maintainers on GitHub1
- Ecosystem1
- Not stable1
- Scalability1
- Community0
Pros of Lucene
- Fast1
- Small1
Sign up to add or upvote prosMake informed product decisions
Cons of Elasticsearch
- Resource hungry7
- Diffecult to get started6
- Expensive5
- Hard to keep stable at large scale4