Need advice about which tool to choose?Ask the StackShare community!
Google BigQuery vs Apache Spark: What are the differences?
Developers describe Google BigQuery as "Analyze terabytes of data in seconds". Run super-fast, SQL-like queries against terabytes of data in seconds, using the processing power of Google's infrastructure Load data with ease. Bulk load your data using Google Cloud Storage or stream it in. Easy access. Access BigQuery by using a browser tool, a command-line tool, or by making calls to the BigQuery REST API with client libraries such as Java, PHP or Python.. On the other hand, Apache Spark is detailed as "Fast and general engine for large-scale data processing". Spark is a fast and general processing engine compatible with Hadoop data. It can run in Hadoop clusters through YARN or Spark's standalone mode, and it can process data in HDFS, HBase, Cassandra, Hive, and any Hadoop InputFormat. It is designed to perform both batch processing (similar to MapReduce) and new workloads like streaming, interactive queries, and machine learning.
Google BigQuery and Apache Spark are primarily classified as "Big Data as a Service" and "Big Data" tools respectively.
Some of the features offered by Google BigQuery are:
- All behind the scenes- Your queries can execute asynchronously in the background, and can be polled for status.
- Import data with ease- Bulk load your data using Google Cloud Storage or stream it in bursts of up to 1,000 rows per second.
- Affordable big data- The first Terabyte of data processed each month is free.
On the other hand, Apache Spark provides the following key features:
- Run programs up to 100x faster than Hadoop MapReduce in memory, or 10x faster on disk
- Write applications quickly in Java, Scala or Python
- Combine SQL, streaming, and complex analytics
"High Performance" is the top reason why over 17 developers like Google BigQuery, while over 45 developers mention "Open-source" as the leading cause for choosing Apache Spark.
Apache Spark is an open source tool with 22.3K GitHub stars and 19.3K GitHub forks. Here's a link to Apache Spark's open source repository on GitHub.
According to the StackShare community, Apache Spark has a broader approval, being mentioned in 262 company stacks & 111 developers stacks; compared to Google BigQuery, which is listed in 156 company stacks and 39 developer stacks.
We have a Kafka topic having events of type A and type B. We need to perform an inner join on both type of events using some common field (primary-key). The joined events to be inserted in Elasticsearch.
In usual cases, type A and type B events (with same key) observed to be close upto 15 minutes. But in some cases they may be far from each other, lets say 6 hours. Sometimes event of either of the types never come.
In all cases, we should be able to find joined events instantly after they are joined and not-joined events within 15 minutes.
The first solution that came to me is to use upsert to update ElasticSearch:
- Use the primary-key as ES document id
- Upsert the records to ES as soon as you receive them. As you are using upsert, the 2nd record of the same primary-key will not overwrite the 1st one, but will be merged with it.
Cons: The load on ES will be higher, due to upsert.
To use Flink:
- Create a KeyedDataStream by the primary-key
- In the ProcessFunction, save the first record in a State. At the same time, create a Timer for 15 minutes in the future
- When the 2nd record comes, read the 1st record from the State, merge those two, and send out the result, and clear the State and the Timer if it has not fired
- When the Timer fires, read the 1st record from the State and send out as the output record.
- Have a 2nd Timer of 6 hours (or more) if you are not using Windowing to clean up the State
Pro: if you have already having Flink ingesting this stream. Otherwise, I would just go with the 1st solution.
Please refer "Structured Streaming" feature of Spark. Refer "Stream - Stream Join" at https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html#stream-stream-joins . In short you need to specify "Define watermark delays on both inputs" and "Define a constraint on time across the two inputs"
Cloud Data-warehouse is the centerpiece of modern Data platform. The choice of the most suitable solution is therefore fundamental.
Our benchmark was conducted over BigQuery and Snowflake. These solutions seem to match our goals but they have very different approaches.
BigQuery is notably the only 100% serverless cloud data-warehouse, which requires absolutely NO maintenance: no re-clustering, no compression, no index optimization, no storage management, no performance management. Snowflake requires to set up (paid) reclustering processes, to manage the performance allocated to each profile, etc. We can also mention Redshift, which we have eliminated because this technology requires even more ops operation.
BigQuery can therefore be set up with almost zero cost of human resources. Its on-demand pricing is particularly adapted to small workloads. 0 cost when the solution is not used, only pay for the query you're running. But quickly the use of slots (with monthly or per-minute commitment) will drastically reduce the cost of use. We've reduced by 10 the cost of our nightly batches by using flex slots.
Finally, a major advantage of BigQuery is its almost perfect integration with Google Cloud Platform services: Cloud functions, Dataflow, Data Studio, etc.
BigQuery is still evolving very quickly. The next milestone, BigQuery Omni, will allow to run queries over data stored in an external Cloud platform (Amazon S3 for example). It will be a major breakthrough in the history of cloud data-warehouses. Omni will compensate a weakness of BigQuery: transferring data in near real time from S3 to BQ is not easy today. It was even simpler to implement via Snowflake's Snowpipe solution.
We also plan to use the Machine Learning features built into BigQuery to accelerate our deployment of Data-Science-based projects. An opportunity only offered by the BigQuery solution
Pros of Google BigQuery
- High Performance28
- Easy to use25
- Fully managed service21
- Cheap Pricing19
- Process hundreds of GB in seconds16
- Full table scans in seconds, no indexes needed11
- Big Data11
- Always on, no per-hour costs8
- Good combination with fluentd6
- Machine learning4
Pros of Apache Spark
- Open-source60
- Fast and Flexible48
- One platform for every big data problem8
- Great for distributed SQL like applications8
- Easy to install and to use6
- Works well for most Datascience usecases3
- Interactive Query2
- In memory Computation2
- Machine learning libratimery, Streaming in real2
Sign up to add or upvote prosMake informed product decisions
Cons of Google BigQuery
- You can't unit test changes in BQ data1
Cons of Apache Spark
- Speed4