StackShareStackShare
Follow on
StackShare

Discover and share technology stacks from companies around the world.

Follow on

© 2025 StackShare. All rights reserved.

Product

  • Stacks
  • Tools
  • Feed

Company

  • About
  • Contact

Legal

  • Privacy Policy
  • Terms of Service
  1. Stackups
  2. Application & Data
  3. Databases
  4. Big Data Tools
  5. Google Cloud Bigtable vs Presto

Google Cloud Bigtable vs Presto

OverviewDecisionsComparisonAlternatives

Overview

Presto
Presto
Stacks394
Followers1.0K
Votes66
Google Cloud Bigtable
Google Cloud Bigtable
Stacks173
Followers363
Votes25

Google Cloud Bigtable vs Presto: What are the differences?

### Key differences between Google Cloud Bigtable and Presto:

1. **Data Processing Paradigm**: Google Cloud Bigtable is a NoSQL, wide-column store database that is optimized for high-performance and scalability for real-time workloads, while Presto is a distributed SQL query engine that is designed for interactive analytics. 
2. **Storage System**: Google Cloud Bigtable is built on Google's distributed file system, Bigtable Storage, which is highly available and fault-tolerant, whereas Presto can connect to various storage systems like HDFS, S3, and relational databases.
3. **Data Model**: Google Cloud Bigtable uses a sparse, wide-column data model where each row in a table can have a different number of columns, while Presto uses a relational data model with tables, rows, and columns.
4. **Query Language**: Google Cloud Bigtable does not support SQL queries natively and is accessed through the HBase API or client libraries, whereas Presto supports ANSI SQL for querying diverse data sources.
5. **Use Cases**: Google Cloud Bigtable is suitable for real-time data ingestion and analytics, time series data, and IoT telemetry processing, while Presto is ideal for ad-hoc queries, interactive analytics, and data warehouse use cases.
6. **Scalability**: Google Cloud Bigtable is designed for horizontal scalability and can handle petabytes of data across thousands of nodes, whereas Presto can scale horizontally but may require additional configurations to handle large datasets efficiently.

In Summary, Google Cloud Bigtable and Presto have distinct differences in terms of data processing paradigm, storage system, data model, query language, use cases, and scalability. 

Share your Stack

Help developers discover the tools you use. Get visibility for your team's tech choices and contribute to the community's knowledge.

View Docs
CLI (Node.js)
or
Manual

Advice on Presto, Google Cloud Bigtable

Ashish
Ashish

Tech Lead, Big Data Platform at Pinterest

Nov 27, 2019

Needs adviceonApache HiveApache HivePrestoPrestoAmazon EC2Amazon EC2

To provide employees with the critical need of interactive querying, we’ve worked with Presto, an open-source distributed SQL query engine, over the years. Operating Presto at Pinterest’s scale has involved resolving quite a few challenges like, supporting deeply nested and huge thrift schemas, slow/ bad worker detection and remediation, auto-scaling cluster, graceful cluster shutdown and impersonation support for ldap authenticator.

Our infrastructure is built on top of Amazon EC2 and we leverage Amazon S3 for storing our data. This separates compute and storage layers, and allows multiple compute clusters to share the S3 data.

We have hundreds of petabytes of data and tens of thousands of Apache Hive tables. Our Presto clusters are comprised of a fleet of 450 r4.8xl EC2 instances. Presto clusters together have over 100 TBs of memory and 14K vcpu cores. Within Pinterest, we have close to more than 1,000 monthly active users (out of total 1,600+ Pinterest employees) using Presto, who run about 400K queries on these clusters per month.

Each query submitted to Presto cluster is logged to a Kafka topic via Singer. Singer is a logging agent built at Pinterest and we talked about it in a previous post. Each query is logged when it is submitted and when it finishes. When a Presto cluster crashes, we will have query submitted events without corresponding query finished events. These events enable us to capture the effect of cluster crashes over time.

Each Presto cluster at Pinterest has workers on a mix of dedicated AWS EC2 instances and Kubernetes pods. Kubernetes platform provides us with the capability to add and remove workers from a Presto cluster very quickly. The best-case latency on bringing up a new worker on Kubernetes is less than a minute. However, when the Kubernetes cluster itself is out of resources and needs to scale up, it can take up to ten minutes. Some other advantages of deploying on Kubernetes platform is that our Presto deployment becomes agnostic of cloud vendor, instance types, OS, etc.

#BigData #AWS #DataScience #DataEngineering

3.72M views3.72M
Comments
Karthik
Karthik

CPO at Cantiz

Nov 5, 2019

Decided

The platform deals with time series data from sensors aggregated against things( event data that originates at periodic intervals). We use Cassandra as our distributed database to store time series data. Aggregated data insights from Cassandra is delivered as web API for consumption from other applications. Presto as a distributed sql querying engine, can provide a faster execution time provided the queries are tuned for proper distribution across the cluster. Another objective that we had was to combine Cassandra table data with other business data from RDBMS or other big data systems where presto through its connector architecture would have opened up a whole lot of options for us.

225k views225k
Comments

Detailed Comparison

Presto
Presto
Google Cloud Bigtable
Google Cloud Bigtable

Distributed SQL Query Engine for Big Data

Google Cloud Bigtable offers you a fast, fully managed, massively scalable NoSQL database service that's ideal for web, mobile, and Internet of Things applications requiring terabytes to petabytes of data. Unlike comparable market offerings, Cloud Bigtable doesn't require you to sacrifice speed, scale, or cost efficiency when your applications grow. Cloud Bigtable has been battle-tested at Google for more than 10 years—it's the database driving major applications such as Google Analytics and Gmail.

-
Unmatched Performance: Single-digit millisecond latency and over 2X the performance per dollar of unmanaged NoSQL alternatives.;Open Source Interface: Because Cloud Bigtable is accessed through the HBase API, it is natively integrated with much of the existing big data and Hadoop ecosystem and supports Google’s big data products. Additionally, data can be imported from or exported to existing HBase clusters through simple bulk ingestion tools using industry-standard formats.;Low Cost: By providing a fully managed service and exceptional efficiency, Cloud Bigtable’s total cost of ownership is less than half the cost of its direct competition.;Security: Cloud Bigtable is built with a replicated storage strategy, and all data is encrypted both in-flight and at rest.;Simplicity: Creating or reconfiguring a Cloud Bigtable cluster is done through a simple user interface and can be completed in less than 10 seconds. As data is put into Cloud Bigtable the backing storage scales automatically, so there’s no need to do complicated estimates of capacity requirements.;Maturity: Over the past 10+ years, Bigtable has driven Google’s most critical applications. In addition, the HBase API is a industry-standard interface for combined operational and analytical workloads.
Statistics
Stacks
394
Stacks
173
Followers
1.0K
Followers
363
Votes
66
Votes
25
Pros & Cons
Pros
  • 18
    Works directly on files in s3 (no ETL)
  • 13
    Open-source
  • 12
    Join multiple databases
  • 10
    Scalable
  • 7
    Gets ready in minutes
Pros
  • 11
    High performance
  • 9
    Fully managed
  • 5
    High scalability
Integrations
PostgreSQL
PostgreSQL
Kafka
Kafka
Redis
Redis
MySQL
MySQL
Hadoop
Hadoop
Microsoft SQL Server
Microsoft SQL Server
Heroic
Heroic
Hadoop
Hadoop
Apache Spark
Apache Spark

What are some alternatives to Presto, Google Cloud Bigtable?

Amazon DynamoDB

Amazon DynamoDB

With it , you can offload the administrative burden of operating and scaling a highly available distributed database cluster, while paying a low price for only what you use.

Apache Spark

Apache Spark

Spark is a fast and general processing engine compatible with Hadoop data. It can run in Hadoop clusters through YARN or Spark's standalone mode, and it can process data in HDFS, HBase, Cassandra, Hive, and any Hadoop InputFormat. It is designed to perform both batch processing (similar to MapReduce) and new workloads like streaming, interactive queries, and machine learning.

Azure Cosmos DB

Azure Cosmos DB

Azure DocumentDB is a fully managed NoSQL database service built for fast and predictable performance, high availability, elastic scaling, global distribution, and ease of development.

Cloud Firestore

Cloud Firestore

Cloud Firestore is a NoSQL document database that lets you easily store, sync, and query data for your mobile and web apps - at global scale.

Amazon Athena

Amazon Athena

Amazon Athena is an interactive query service that makes it easy to analyze data in Amazon S3 using standard SQL. Athena is serverless, so there is no infrastructure to manage, and you pay only for the queries that you run.

Apache Flink

Apache Flink

Apache Flink is an open source system for fast and versatile data analytics in clusters. Flink supports batch and streaming analytics, in one system. Analytical programs can be written in concise and elegant APIs in Java and Scala.

lakeFS

lakeFS

It is an open-source data version control system for data lakes. It provides a “Git for data” platform enabling you to implement best practices from software engineering on your data lake, including branching and merging, CI/CD, and production-like dev/test environments.

Druid

Druid

Druid is a distributed, column-oriented, real-time analytics data store that is commonly used to power exploratory dashboards in multi-tenant environments. Druid excels as a data warehousing solution for fast aggregate queries on petabyte sized data sets. Druid supports a variety of flexible filters, exact calculations, approximate algorithms, and other useful calculations.

Cloudant

Cloudant

Cloudant’s distributed database as a service (DBaaS) allows developers of fast-growing web and mobile apps to focus on building and improving their products, instead of worrying about scaling and managing databases on their own.

Apache Kylin

Apache Kylin

Apache Kylin™ is an open source Distributed Analytics Engine designed to provide SQL interface and multi-dimensional analysis (OLAP) on Hadoop/Spark supporting extremely large datasets, originally contributed from eBay Inc.

Related Comparisons

Bootstrap
Materialize

Bootstrap vs Materialize

Laravel
Django

Django vs Laravel vs Node.js

Bootstrap
Foundation

Bootstrap vs Foundation vs Material UI

Node.js
Spring Boot

Node.js vs Spring-Boot

Liquibase
Flyway

Flyway vs Liquibase