Alternatives to Tensorflow Lite logo

Alternatives to Tensorflow Lite

TensorFlow, ML Kit, Caffe2, TensorFlow.js, and PyTorch are the most popular alternatives and competitors to Tensorflow Lite.
75
1

What is Tensorflow Lite and what are its top alternatives?

Tensorflow Lite is a lightweight machine learning framework designed for mobile and IoT devices. It enables developers to deploy and run machine learning models on edge devices with low latency and low power consumption. The key features of Tensorflow Lite include support for models in various formats like TensorFlow, TFLite, and custom models, hardware acceleration through GPU and NPU, post-training quantization for model optimization, and support for multiple programming languages. However, some limitations of Tensorflow Lite include limited model compatibility compared to the original TensorFlow, lack of support for complex models or operations, and potential performance trade-offs in certain cases.

  1. PyTorch Mobile: PyTorch Mobile is a machine learning framework that allows developers to deploy PyTorch models on mobile and embedded devices. Key features include PyTorch model compatibility, support for hardware acceleration, and ease of use. Pros include flexibility and interoperability with PyTorch, while cons include potentially higher resource usage compared to Tensorflow Lite.

  2. MNN (Mobile Neural Network): MNN is an open-source deep learning framework optimized for mobile devices. Key features include support for various neural network models, high performance on mobile hardware, and compatibility with popular machine learning frameworks. Pros include efficiency and cross-platform support, while cons include potential complexity for beginners.

  3. Core ML: Core ML is Apple's machine learning framework for iOS devices. Key features include seamless integration with iOS SDK, support for built-in models, and hardware acceleration. Pros include native integration with iOS ecosystem, while cons include limited cross-platform compatibility.

  4. ONNX Runtime: ONNX Runtime is a performance-focused inference engine for ONNX (Open Neural Network Exchange) models. Key features include support for various hardware configurations, efficient execution of models, and compatibility with ONNX format. Pros include performance optimization, while cons include potential learning curve for new users.

  5. Caffe2: Caffe2 is a deep learning framework with a focus on mobile deployment. Key features include support for various model types, flexibility in model deployment, and optimization for mobile devices. Pros include efficiency and ease of integration, while cons include potential complexity compared to simpler frameworks.

  6. TVM (Apache TVM): TVM is an open-source deep learning compiler stack that optimizes machine learning models for various hardware targets. Key features include hardware-aware optimization, support for multiple machine learning frameworks, and efficient code generation. Pros include performance optimization, while cons include potential complexity of the stack.

  7. Arm NN: Arm NN is a neural network inference engine optimized for Arm architecture. Key features include support for Arm-based devices, performance optimization for edge computing, and compatibility with popular machine learning frameworks. Pros include efficiency on Arm devices, while cons include limited compatibility with other architectures.

  8. Edge TPU: Edge TPU is Google's purpose-built machine learning accelerator for edge devices. Key features include high performance, low latency, and support for Tensorflow Lite models. Pros include specialized hardware for machine learning inference, while cons include dependency on specific hardware from Google.

  9. ML Kit: ML Kit is Google's mobile SDK for machine learning on Android and iOS devices. Key features include ready-to-use APIs for common machine learning tasks, compatibility with Firebase, and support for custom models. Pros include ease of integration with Google services, while cons include limited flexibility compared to other frameworks.

  10. TinyML: TinyML is a community-driven platform for running machine learning models on microcontrollers. Key features include model optimization for resource-constrained devices, support for low-power consumption, and a focus on edge computing applications. Pros include specialized optimization for microcontrollers, while cons include potential limitations in model complexity compared to larger frameworks.

Top Alternatives to Tensorflow Lite

  • TensorFlow
    TensorFlow

    TensorFlow is an open source software library for numerical computation using data flow graphs. Nodes in the graph represent mathematical operations, while the graph edges represent the multidimensional data arrays (tensors) communicated between them. The flexible architecture allows you to deploy computation to one or more CPUs or GPUs in a desktop, server, or mobile device with a single API. ...

  • ML Kit
    ML Kit

    ML Kit brings Google’s machine learning expertise to mobile developers in a powerful and easy-to-use package. ...

  • Caffe2
    Caffe2

    Caffe2 is deployed at Facebook to help developers and researchers train large machine learning models and deliver AI-powered experiences in our mobile apps. Now, developers will have access to many of the same tools, allowing them to run large-scale distributed training scenarios and build machine learning applications for mobile. ...

  • TensorFlow.js
    TensorFlow.js

    Use flexible and intuitive APIs to build and train models from scratch using the low-level JavaScript linear algebra library or the high-level layers API ...

  • PyTorch
    PyTorch

    PyTorch is not a Python binding into a monolothic C++ framework. It is built to be deeply integrated into Python. You can use it naturally like you would use numpy / scipy / scikit-learn etc. ...

  • OpenCV
    OpenCV

    OpenCV was designed for computational efficiency and with a strong focus on real-time applications. Written in optimized C/C++, the library can take advantage of multi-core processing. Enabled with OpenCL, it can take advantage of the hardware acceleration of the underlying heterogeneous compute platform. ...

  • Postman
    Postman

    It is the only complete API development environment, used by nearly five million developers and more than 100,000 companies worldwide. ...

  • Postman
    Postman

    It is the only complete API development environment, used by nearly five million developers and more than 100,000 companies worldwide. ...

Tensorflow Lite alternatives & related posts

TensorFlow logo

TensorFlow

3.8K
3.5K
106
Open Source Software Library for Machine Intelligence
3.8K
3.5K
+ 1
106
PROS OF TENSORFLOW
  • 32
    High Performance
  • 19
    Connect Research and Production
  • 16
    Deep Flexibility
  • 12
    Auto-Differentiation
  • 11
    True Portability
  • 6
    Easy to use
  • 5
    High level abstraction
  • 5
    Powerful
CONS OF TENSORFLOW
  • 9
    Hard
  • 6
    Hard to debug
  • 2
    Documentation not very helpful

related TensorFlow posts

Tom Klein

Google Analytics is a great tool to analyze your traffic. To debug our software and ask questions, we love to use Postman and Stack Overflow. Google Drive helps our team to share documents. We're able to build our great products through the APIs by Google Maps, CloudFlare, Stripe, PayPal, Twilio, Let's Encrypt, and TensorFlow.

See more
Conor Myhrvold
Tech Brand Mgr, Office of CTO at Uber · | 8 upvotes · 2.8M views

Why we built an open source, distributed training framework for TensorFlow , Keras , and PyTorch:

At Uber, we apply deep learning across our business; from self-driving research to trip forecasting and fraud prevention, deep learning enables our engineers and data scientists to create better experiences for our users.

TensorFlow has become a preferred deep learning library at Uber for a variety of reasons. To start, the framework is one of the most widely used open source frameworks for deep learning, which makes it easy to onboard new users. It also combines high performance with an ability to tinker with low-level model details—for instance, we can use both high-level APIs, such as Keras, and implement our own custom operators using NVIDIA’s CUDA toolkit.

Uber has introduced Michelangelo (https://eng.uber.com/michelangelo/), an internal ML-as-a-service platform that democratizes machine learning and makes it easy to build and deploy these systems at scale. In this article, we pull back the curtain on Horovod, an open source component of Michelangelo’s deep learning toolkit which makes it easier to start—and speed up—distributed deep learning projects with TensorFlow:

https://eng.uber.com/horovod/

(Direct GitHub repo: https://github.com/uber/horovod)

See more
ML Kit logo

ML Kit

137
209
0
Machine learning for mobile developers (by Google)
137
209
+ 1
0
PROS OF ML KIT
    Be the first to leave a pro
    CONS OF ML KIT
      Be the first to leave a con

      related ML Kit posts

      Caffe2 logo

      Caffe2

      49
      83
      2
      Open Source Cross-Platform Machine Learning Tools (by Facebook)
      49
      83
      + 1
      2
      PROS OF CAFFE2
      • 1
        Mobile deployment
      • 1
        Open Source
      CONS OF CAFFE2
        Be the first to leave a con

        related Caffe2 posts

        TensorFlow.js logo

        TensorFlow.js

        181
        374
        18
        Machine Learning in JavaScript
        181
        374
        + 1
        18
        PROS OF TENSORFLOW.JS
        • 6
          Open Source
        • 5
          NodeJS Powered
        • 2
          Deploy python ML model directly into javascript
        • 1
          Cost - no server needed for inference
        • 1
          Privacy - no data sent to server
        • 1
          Runs Client Side on device
        • 1
          Can run TFJS on backend, frontend, react native, + IOT
        • 1
          Easy to share and use - get more eyes on your research
        CONS OF TENSORFLOW.JS
          Be the first to leave a con

          related TensorFlow.js posts

          rashid munir
          freelancer at freelancer · | 3 upvotes · 110.3K views

          Need your kind suggestion if I should choose TensorFlow.js or TensorFlow with Python for ML models. As I don't want to go and have not gone too deep in JavaScript, I need your suggestion.

          See more
          Neel Bavarva
          Student at NeelBavarva · | 2 upvotes · 90.5K views
          Shared insights
          on
          TensorFlow.jsTensorFlow.jsPythonPython

          I am highly confused about using Machine Learning in Web Development. Should I learn ML in Python or start with TensorFlow.js as I'm a MERN stack developer? If any good resource (course/youtube channel) for learning Tensorflow.js is out there, please share it.

          See more
          PyTorch logo

          PyTorch

          1.5K
          1.5K
          43
          A deep learning framework that puts Python first
          1.5K
          1.5K
          + 1
          43
          PROS OF PYTORCH
          • 15
            Easy to use
          • 11
            Developer Friendly
          • 10
            Easy to debug
          • 7
            Sometimes faster than TensorFlow
          CONS OF PYTORCH
          • 3
            Lots of code
          • 1
            It eats poop

          related PyTorch posts

          Server side

          We decided to use Python for our backend because it is one of the industry standard languages for data analysis and machine learning. It also has a lot of support due to its large user base.

          • Web Server: We chose Flask because we want to keep our machine learning / data analysis and the web server in the same language. Flask is easy to use and we all have experience with it. Postman will be used for creating and testing APIs due to its convenience.

          • Machine Learning: We decided to go with PyTorch for machine learning since it is one of the most popular libraries. It is also known to have an easier learning curve than other popular libraries such as Tensorflow. This is important because our team lacks ML experience and learning the tool as fast as possible would increase productivity.

          • Data Analysis: Some common Python libraries will be used to analyze our data. These include NumPy, Pandas , and matplotlib. These tools combined will help us learn the properties and characteristics of our data. Jupyter notebook will be used to help organize the data analysis process, and improve the code readability.

          Client side

          • UI: We decided to use React for the UI because it helps organize the data and variables of the application into components, making it very convenient to maintain our dashboard. Since React is one of the most popular front end frameworks right now, there will be a lot of support for it as well as a lot of potential new hires that are familiar with the framework. CSS 3 and HTML5 will be used for the basic styling and structure of the web app, as they are the most widely used front end languages.

          • State Management: We decided to use Redux to manage the state of the application since it works naturally to React. Our team also already has experience working with Redux which gave it a slight edge over the other state management libraries.

          • Data Visualization: We decided to use the React-based library Victory to visualize the data. They have very user friendly documentation on their official website which we find easy to learn from.

          Cache

          • Caching: We decided between Redis and memcached because they are two of the most popular open-source cache engines. We ultimately decided to use Redis to improve our web app performance mainly due to the extra functionalities it provides such as fine-tuning cache contents and durability.

          Database

          • Database: We decided to use a NoSQL database over a relational database because of its flexibility from not having a predefined schema. The user behavior analytics has to be flexible since the data we plan to store may change frequently. We decided on MongoDB because it is lightweight and we can easily host the database with MongoDB Atlas . Everyone on our team also has experience working with MongoDB.

          Infrastructure

          • Deployment: We decided to use Heroku over AWS, Azure, Google Cloud because it is free. Although there are advantages to the other cloud services, Heroku makes the most sense to our team because our primary goal is to build an MVP.

          Other Tools

          • Communication Slack will be used as the primary source of communication. It provides all the features needed for basic discussions. In terms of more interactive meetings, Zoom will be used for its video calls and screen sharing capabilities.

          • Source Control The project will be stored on GitHub and all code changes will be done though pull requests. This will help us keep the codebase clean and make it easy to revert changes when we need to.

          See more
          Conor Myhrvold
          Tech Brand Mgr, Office of CTO at Uber · | 8 upvotes · 2.8M views

          Why we built an open source, distributed training framework for TensorFlow , Keras , and PyTorch:

          At Uber, we apply deep learning across our business; from self-driving research to trip forecasting and fraud prevention, deep learning enables our engineers and data scientists to create better experiences for our users.

          TensorFlow has become a preferred deep learning library at Uber for a variety of reasons. To start, the framework is one of the most widely used open source frameworks for deep learning, which makes it easy to onboard new users. It also combines high performance with an ability to tinker with low-level model details—for instance, we can use both high-level APIs, such as Keras, and implement our own custom operators using NVIDIA’s CUDA toolkit.

          Uber has introduced Michelangelo (https://eng.uber.com/michelangelo/), an internal ML-as-a-service platform that democratizes machine learning and makes it easy to build and deploy these systems at scale. In this article, we pull back the curtain on Horovod, an open source component of Michelangelo’s deep learning toolkit which makes it easier to start—and speed up—distributed deep learning projects with TensorFlow:

          https://eng.uber.com/horovod/

          (Direct GitHub repo: https://github.com/uber/horovod)

          See more
          OpenCV logo

          OpenCV

          1.3K
          1K
          101
          Open Source Computer Vision Library
          1.3K
          1K
          + 1
          101
          PROS OF OPENCV
          • 37
            Computer Vision
          • 18
            Open Source
          • 12
            Imaging
          • 10
            Face Detection
          • 10
            Machine Learning
          • 6
            Great community
          • 4
            Realtime Image Processing
          • 2
            Helping almost CV problem
          • 2
            Image Augmentation
          CONS OF OPENCV
            Be the first to leave a con

            related OpenCV posts

            Shared insights
            on
            FFMPEGFFMPEGOpenCVOpenCV

            Hi Team,

            Could you please suggest which one need to be used in between OpenCV and FFMPEG.

            Thank you in Advance.

            See more
            Postman logo

            Postman

            94.4K
            80.9K
            1.8K
            Only complete API development environment
            94.4K
            80.9K
            + 1
            1.8K
            PROS OF POSTMAN
            • 490
              Easy to use
            • 369
              Great tool
            • 276
              Makes developing rest api's easy peasy
            • 156
              Easy setup, looks good
            • 144
              The best api workflow out there
            • 53
              It's the best
            • 53
              History feature
            • 44
              Adds real value to my workflow
            • 43
              Great interface that magically predicts your needs
            • 35
              The best in class app
            • 12
              Can save and share script
            • 10
              Fully featured without looking cluttered
            • 8
              Collections
            • 8
              Option to run scrips
            • 8
              Global/Environment Variables
            • 7
              Shareable Collections
            • 7
              Dead simple and useful. Excellent
            • 7
              Dark theme easy on the eyes
            • 6
              Awesome customer support
            • 6
              Great integration with newman
            • 5
              Documentation
            • 5
              Simple
            • 5
              The test script is useful
            • 4
              Saves responses
            • 4
              This has simplified my testing significantly
            • 4
              Makes testing API's as easy as 1,2,3
            • 4
              Easy as pie
            • 3
              API-network
            • 3
              I'd recommend it to everyone who works with apis
            • 3
              Mocking API calls with predefined response
            • 2
              Now supports GraphQL
            • 2
              Postman Runner CI Integration
            • 2
              Easy to setup, test and provides test storage
            • 2
              Continuous integration using newman
            • 2
              Pre-request Script and Test attributes are invaluable
            • 2
              Runner
            • 2
              Graph
            • 1
              <a href="http://fixbit.com/">useful tool</a>
            CONS OF POSTMAN
            • 10
              Stores credentials in HTTP
            • 9
              Bloated features and UI
            • 8
              Cumbersome to switch authentication tokens
            • 7
              Poor GraphQL support
            • 5
              Expensive
            • 3
              Not free after 5 users
            • 3
              Can't prompt for per-request variables
            • 1
              Import swagger
            • 1
              Support websocket
            • 1
              Import curl

            related Postman posts

            Noah Zoschke
            Engineering Manager at Segment · | 30 upvotes · 2.9M views

            We just launched the Segment Config API (try it out for yourself here) — a set of public REST APIs that enable you to manage your Segment configuration. A public API is only as good as its #documentation. For the API reference doc we are using Postman.

            Postman is an “API development environment”. You download the desktop app, and build API requests by URL and payload. Over time you can build up a set of requests and organize them into a “Postman Collection”. You can generalize a collection with “collection variables”. This allows you to parameterize things like username, password and workspace_name so a user can fill their own values in before making an API call. This makes it possible to use Postman for one-off API tasks instead of writing code.

            Then you can add Markdown content to the entire collection, a folder of related methods, and/or every API method to explain how the APIs work. You can publish a collection and easily share it with a URL.

            This turns Postman from a personal #API utility to full-blown public interactive API documentation. The result is a great looking web page with all the API calls, docs and sample requests and responses in one place. Check out the results here.

            Postman’s powers don’t end here. You can automate Postman with “test scripts” and have it periodically run a collection scripts as “monitors”. We now have #QA around all the APIs in public docs to make sure they are always correct

            Along the way we tried other techniques for documenting APIs like ReadMe.io or Swagger UI. These required a lot of effort to customize.

            Writing and maintaining a Postman collection takes some work, but the resulting documentation site, interactivity and API testing tools are well worth it.

            See more
            Simon Reymann
            Senior Fullstack Developer at QUANTUSflow Software GmbH · | 27 upvotes · 5.1M views

            Our whole Node.js backend stack consists of the following tools:

            • Lerna as a tool for multi package and multi repository management
            • npm as package manager
            • NestJS as Node.js framework
            • TypeScript as programming language
            • ExpressJS as web server
            • Swagger UI for visualizing and interacting with the API’s resources
            • Postman as a tool for API development
            • TypeORM as object relational mapping layer
            • JSON Web Token for access token management

            The main reason we have chosen Node.js over PHP is related to the following artifacts:

            • Made for the web and widely in use: Node.js is a software platform for developing server-side network services. Well-known projects that rely on Node.js include the blogging software Ghost, the project management tool Trello and the operating system WebOS. Node.js requires the JavaScript runtime environment V8, which was specially developed by Google for the popular Chrome browser. This guarantees a very resource-saving architecture, which qualifies Node.js especially for the operation of a web server. Ryan Dahl, the developer of Node.js, released the first stable version on May 27, 2009. He developed Node.js out of dissatisfaction with the possibilities that JavaScript offered at the time. The basic functionality of Node.js has been mapped with JavaScript since the first version, which can be expanded with a large number of different modules. The current package managers (npm or Yarn) for Node.js know more than 1,000,000 of these modules.
            • Fast server-side solutions: Node.js adopts the JavaScript "event-loop" to create non-blocking I/O applications that conveniently serve simultaneous events. With the standard available asynchronous processing within JavaScript/TypeScript, highly scalable, server-side solutions can be realized. The efficient use of the CPU and the RAM is maximized and more simultaneous requests can be processed than with conventional multi-thread servers.
            • A language along the entire stack: Widely used frameworks such as React or AngularJS or Vue.js, which we prefer, are written in JavaScript/TypeScript. If Node.js is now used on the server side, you can use all the advantages of a uniform script language throughout the entire application development. The same language in the back- and frontend simplifies the maintenance of the application and also the coordination within the development team.
            • Flexibility: Node.js sets very few strict dependencies, rules and guidelines and thus grants a high degree of flexibility in application development. There are no strict conventions so that the appropriate architecture, design structures, modules and features can be freely selected for the development.
            See more
            Postman logo

            Postman

            94.4K
            80.9K
            1.8K
            Only complete API development environment
            94.4K
            80.9K
            + 1
            1.8K
            PROS OF POSTMAN
            • 490
              Easy to use
            • 369
              Great tool
            • 276
              Makes developing rest api's easy peasy
            • 156
              Easy setup, looks good
            • 144
              The best api workflow out there
            • 53
              It's the best
            • 53
              History feature
            • 44
              Adds real value to my workflow
            • 43
              Great interface that magically predicts your needs
            • 35
              The best in class app
            • 12
              Can save and share script
            • 10
              Fully featured without looking cluttered
            • 8
              Collections
            • 8
              Option to run scrips
            • 8
              Global/Environment Variables
            • 7
              Shareable Collections
            • 7
              Dead simple and useful. Excellent
            • 7
              Dark theme easy on the eyes
            • 6
              Awesome customer support
            • 6
              Great integration with newman
            • 5
              Documentation
            • 5
              Simple
            • 5
              The test script is useful
            • 4
              Saves responses
            • 4
              This has simplified my testing significantly
            • 4
              Makes testing API's as easy as 1,2,3
            • 4
              Easy as pie
            • 3
              API-network
            • 3
              I'd recommend it to everyone who works with apis
            • 3
              Mocking API calls with predefined response
            • 2
              Now supports GraphQL
            • 2
              Postman Runner CI Integration
            • 2
              Easy to setup, test and provides test storage
            • 2
              Continuous integration using newman
            • 2
              Pre-request Script and Test attributes are invaluable
            • 2
              Runner
            • 2
              Graph
            • 1
              <a href="http://fixbit.com/">useful tool</a>
            CONS OF POSTMAN
            • 10
              Stores credentials in HTTP
            • 9
              Bloated features and UI
            • 8
              Cumbersome to switch authentication tokens
            • 7
              Poor GraphQL support
            • 5
              Expensive
            • 3
              Not free after 5 users
            • 3
              Can't prompt for per-request variables
            • 1
              Import swagger
            • 1
              Support websocket
            • 1
              Import curl

            related Postman posts

            Noah Zoschke
            Engineering Manager at Segment · | 30 upvotes · 2.9M views

            We just launched the Segment Config API (try it out for yourself here) — a set of public REST APIs that enable you to manage your Segment configuration. A public API is only as good as its #documentation. For the API reference doc we are using Postman.

            Postman is an “API development environment”. You download the desktop app, and build API requests by URL and payload. Over time you can build up a set of requests and organize them into a “Postman Collection”. You can generalize a collection with “collection variables”. This allows you to parameterize things like username, password and workspace_name so a user can fill their own values in before making an API call. This makes it possible to use Postman for one-off API tasks instead of writing code.

            Then you can add Markdown content to the entire collection, a folder of related methods, and/or every API method to explain how the APIs work. You can publish a collection and easily share it with a URL.

            This turns Postman from a personal #API utility to full-blown public interactive API documentation. The result is a great looking web page with all the API calls, docs and sample requests and responses in one place. Check out the results here.

            Postman’s powers don’t end here. You can automate Postman with “test scripts” and have it periodically run a collection scripts as “monitors”. We now have #QA around all the APIs in public docs to make sure they are always correct

            Along the way we tried other techniques for documenting APIs like ReadMe.io or Swagger UI. These required a lot of effort to customize.

            Writing and maintaining a Postman collection takes some work, but the resulting documentation site, interactivity and API testing tools are well worth it.

            See more
            Simon Reymann
            Senior Fullstack Developer at QUANTUSflow Software GmbH · | 27 upvotes · 5.1M views

            Our whole Node.js backend stack consists of the following tools:

            • Lerna as a tool for multi package and multi repository management
            • npm as package manager
            • NestJS as Node.js framework
            • TypeScript as programming language
            • ExpressJS as web server
            • Swagger UI for visualizing and interacting with the API’s resources
            • Postman as a tool for API development
            • TypeORM as object relational mapping layer
            • JSON Web Token for access token management

            The main reason we have chosen Node.js over PHP is related to the following artifacts:

            • Made for the web and widely in use: Node.js is a software platform for developing server-side network services. Well-known projects that rely on Node.js include the blogging software Ghost, the project management tool Trello and the operating system WebOS. Node.js requires the JavaScript runtime environment V8, which was specially developed by Google for the popular Chrome browser. This guarantees a very resource-saving architecture, which qualifies Node.js especially for the operation of a web server. Ryan Dahl, the developer of Node.js, released the first stable version on May 27, 2009. He developed Node.js out of dissatisfaction with the possibilities that JavaScript offered at the time. The basic functionality of Node.js has been mapped with JavaScript since the first version, which can be expanded with a large number of different modules. The current package managers (npm or Yarn) for Node.js know more than 1,000,000 of these modules.
            • Fast server-side solutions: Node.js adopts the JavaScript "event-loop" to create non-blocking I/O applications that conveniently serve simultaneous events. With the standard available asynchronous processing within JavaScript/TypeScript, highly scalable, server-side solutions can be realized. The efficient use of the CPU and the RAM is maximized and more simultaneous requests can be processed than with conventional multi-thread servers.
            • A language along the entire stack: Widely used frameworks such as React or AngularJS or Vue.js, which we prefer, are written in JavaScript/TypeScript. If Node.js is now used on the server side, you can use all the advantages of a uniform script language throughout the entire application development. The same language in the back- and frontend simplifies the maintenance of the application and also the coordination within the development team.
            • Flexibility: Node.js sets very few strict dependencies, rules and guidelines and thus grants a high degree of flexibility in application development. There are no strict conventions so that the appropriate architecture, design structures, modules and features can be freely selected for the development.
            See more