Alternatives to Amazon MQ logo

Alternatives to Amazon MQ

Amazon SQS, RabbitMQ, IBM MQ, ActiveMQ, and Kafka are the most popular alternatives and competitors to Amazon MQ.
30
189
+ 1
6

What is Amazon MQ and what are its top alternatives?

Amazon MQ is a managed message broker service for Apache ActiveMQ that makes it easy to set up and operate message brokers in the cloud.
Amazon MQ is a tool in the Message Queue category of a tech stack.

Top Alternatives to Amazon MQ

  • Amazon SQS

    Amazon SQS

    Transmit any volume of data, at any level of throughput, without losing messages or requiring other services to be always available. With SQS, you can offload the administrative burden of operating and scaling a highly available messaging cluster, while paying a low price for only what you use. ...

  • RabbitMQ

    RabbitMQ

    RabbitMQ gives your applications a common platform to send and receive messages, and your messages a safe place to live until received. ...

  • IBM MQ

    IBM MQ

    It is a messaging middleware that simplifies and accelerates the integration of diverse applications and business data across multiple platforms. It offers proven, enterprise-grade messaging capabilities that skillfully and safely move information. ...

  • ActiveMQ

    ActiveMQ

    Apache ActiveMQ is fast, supports many Cross Language Clients and Protocols, comes with easy to use Enterprise Integration Patterns and many advanced features while fully supporting JMS 1.1 and J2EE 1.4. Apache ActiveMQ is released under the Apache 2.0 License. ...

  • Kafka

    Kafka

    Kafka is a distributed, partitioned, replicated commit log service. It provides the functionality of a messaging system, but with a unique design. ...

  • Azure Service Bus

    Azure Service Bus

    It is a cloud messaging system for connecting apps and devices across public and private clouds. You can depend on it when you need highly-reliable cloud messaging service between applications and services, even when one or more is offline. ...

  • Celery

    Celery

    Celery is an asynchronous task queue/job queue based on distributed message passing. It is focused on real-time operation, but supports scheduling as well. ...

  • MQTT

    MQTT

    It was designed as an extremely lightweight publish/subscribe messaging transport. It is useful for connections with remote locations where a small code footprint is required and/or network bandwidth is at a premium. ...

Amazon MQ alternatives & related posts

related Amazon SQS posts

Tim Specht
‎Co-Founder and CTO at Dubsmash · | 14 upvotes · 542.6K views

In order to accurately measure & track user behaviour on our platform we moved over quickly from the initial solution using Google Analytics to a custom-built one due to resource & pricing concerns we had.

While this does sound complicated, it’s as easy as clients sending JSON blobs of events to Amazon Kinesis from where we use AWS Lambda & Amazon SQS to batch and process incoming events and then ingest them into Google BigQuery. Once events are stored in BigQuery (which usually only takes a second from the time the client sends the data until it’s available), we can use almost-standard-SQL to simply query for data while Google makes sure that, even with terabytes of data being scanned, query times stay in the range of seconds rather than hours. Before ingesting their data into the pipeline, our mobile clients are aggregating events internally and, once a certain threshold is reached or the app is going to the background, sending the events as a JSON blob into the stream.

In the past we had workers running that continuously read from the stream and would validate and post-process the data and then enqueue them for other workers to write them to BigQuery. We went ahead and implemented the Lambda-based approach in such a way that Lambda functions would automatically be triggered for incoming records, pre-aggregate events, and write them back to SQS, from which we then read them, and persist the events to BigQuery. While this approach had a couple of bumps on the road, like re-triggering functions asynchronously to keep up with the stream and proper batch sizes, we finally managed to get it running in a reliable way and are very happy with this solution today.

#ServerlessTaskProcessing #GeneralAnalytics #RealTimeDataProcessing #BigDataAsAService

See more
Praveen Mooli
Engineering Manager at Taylor and Francis · | 13 upvotes · 1.5M views

We are in the process of building a modern content platform to deliver our content through various channels. We decided to go with Microservices architecture as we wanted scale. Microservice architecture style is an approach to developing an application as a suite of small independently deployable services built around specific business capabilities. You can gain modularity, extensive parallelism and cost-effective scaling by deploying services across many distributed servers. Microservices modularity facilitates independent updates/deployments, and helps to avoid single point of failure, which can help prevent large-scale outages. We also decided to use Event Driven Architecture pattern which is a popular distributed asynchronous architecture pattern used to produce highly scalable applications. The event-driven architecture is made up of highly decoupled, single-purpose event processing components that asynchronously receive and process events.

To build our #Backend capabilities we decided to use the following: 1. #Microservices - Java with Spring Boot , Node.js with ExpressJS and Python with Flask 2. #Eventsourcingframework - Amazon Kinesis , Amazon Kinesis Firehose , Amazon SNS , Amazon SQS, AWS Lambda 3. #Data - Amazon RDS , Amazon DynamoDB , Amazon S3 , MongoDB Atlas

To build #Webapps we decided to use Angular 2 with RxJS

#Devops - GitHub , Travis CI , Terraform , Docker , Serverless

See more

related RabbitMQ posts

James Cunningham
Operations Engineer at Sentry · | 18 upvotes · 1.1M views
Shared insights
on
Celery
RabbitMQ
at

As Sentry runs throughout the day, there are about 50 different offline tasks that we execute—anything from “process this event, pretty please” to “send all of these cool people some emails.” There are some that we execute once a day and some that execute thousands per second.

Managing this variety requires a reliably high-throughput message-passing technology. We use Celery's RabbitMQ implementation, and we stumbled upon a great feature called Federation that allows us to partition our task queue across any number of RabbitMQ servers and gives us the confidence that, if any single server gets backlogged, others will pitch in and distribute some of the backlogged tasks to their consumers.

#MessageQueue

See more
Tim Abbott
Shared insights
on
RabbitMQ
Python
Redis
at

We've been using RabbitMQ as Zulip's queuing system since we needed a queuing system. What I like about it is that it scales really well and has good libraries for a wide range of platforms, including our own Python. So aside from getting it running, we've had to put basically 0 effort into making it scale for our needs.

However, there's several things that could be better about it: * It's error messages are absolutely terrible; if ever one of our users ends up getting an error with RabbitMQ (even for simple things like a misconfigured hostname), they always end up needing to get help from the Zulip team, because the errors logs are just inscrutable. As an open source project, we've handled this issue by really carefully scripting the installation to be a failure-proof configuration (in this case, setting the RabbitMQ hostname to 127.0.0.1, so that no user-controlled configuration can break it). But it was a real pain to get there and the process of determining we needed to do that caused a significant amount of pain to folks installing Zulip. * The pika library for Python takes a lot of time to startup a RabbitMQ connection; this means that Zulip server restarts are more disruptive than would be ideal. * It's annoying that you need to run the rabbitmqctl management commands as root.

But overall, I like that it has clean, clear semanstics and high scalability, and haven't been tempted to do the work to migrate to something like Redis (which has its own downsides).

See more
IBM MQ logo

IBM MQ

67
91
3
Enterprise-grade messaging middleware
67
91
+ 1
3

related IBM MQ posts

ActiveMQ logo

ActiveMQ

374
883
65
A message broker written in Java together with a full JMS client
374
883
+ 1
65

related ActiveMQ posts

I want to choose Message Queue with the following features - Highly Available, Distributed, Scalable, Monitoring. I have RabbitMQ, ActiveMQ, Kafka and Apache RocketMQ in mind. But I am confused which one to choose.

See more
Naushad Warsi
software developer at klingelnberg · | 1 upvote · 513.6K views
Shared insights
on
ActiveMQ
RabbitMQ

I use ActiveMQ because RabbitMQ have stopped giving the support for AMQP 1.0 or above version and the earlier version of AMQP doesn't give the functionality to support OAuth.

If OAuth is not required and we can go with AMQP 0.9 then i still recommend rabbitMq.

See more

related Kafka posts

Eric Colson
Chief Algorithms Officer at Stitch Fix · | 20 upvotes · 1.6M views

The algorithms and data infrastructure at Stitch Fix is housed in #AWS. Data acquisition is split between events flowing through Kafka, and periodic snapshots of PostgreSQL DBs. We store data in an Amazon S3 based data warehouse. Apache Spark on Yarn is our tool of choice for data movement and #ETL. Because our storage layer (s3) is decoupled from our processing layer, we are able to scale our compute environment very elastically. We have several semi-permanent, autoscaling Yarn clusters running to serve our data processing needs. While the bulk of our compute infrastructure is dedicated to algorithmic processing, we also implemented Presto for adhoc queries and dashboards.

Beyond data movement and ETL, most #ML centric jobs (e.g. model training and execution) run in a similarly elastic environment as containers running Python and R code on Amazon EC2 Container Service clusters. The execution of batch jobs on top of ECS is managed by Flotilla, a service we built in house and open sourced (see https://github.com/stitchfix/flotilla-os).

At Stitch Fix, algorithmic integrations are pervasive across the business. We have dozens of data products actively integrated systems. That requires serving layer that is robust, agile, flexible, and allows for self-service. Models produced on Flotilla are packaged for deployment in production using Khan, another framework we've developed internally. Khan provides our data scientists the ability to quickly productionize those models they've developed with open source frameworks in Python 3 (e.g. PyTorch, sklearn), by automatically packaging them as Docker containers and deploying to Amazon ECS. This provides our data scientist a one-click method of getting from their algorithms to production. We then integrate those deployments into a service mesh, which allows us to A/B test various implementations in our product.

For more info:

#DataScience #DataStack #Data

See more
John Kodumal

As we've evolved or added additional infrastructure to our stack, we've biased towards managed services. Most new backing stores are Amazon RDS instances now. We do use self-managed PostgreSQL with TimescaleDB for time-series data—this is made HA with the use of Patroni and Consul.

We also use managed Amazon ElastiCache instances instead of spinning up Amazon EC2 instances to run Redis workloads, as well as shifting to Amazon Kinesis instead of Kafka.

See more
Azure Service Bus logo

Azure Service Bus

99
206
0
Reliable cloud messaging as a service (MaaS)
99
206
+ 1
0
PROS OF AZURE SERVICE BUS
    No pros available
    CONS OF AZURE SERVICE BUS
      No cons available

      related Azure Service Bus posts

      related Celery posts

      James Cunningham
      Operations Engineer at Sentry · | 18 upvotes · 1.1M views
      Shared insights
      on
      Celery
      RabbitMQ
      at

      As Sentry runs throughout the day, there are about 50 different offline tasks that we execute—anything from “process this event, pretty please” to “send all of these cool people some emails.” There are some that we execute once a day and some that execute thousands per second.

      Managing this variety requires a reliably high-throughput message-passing technology. We use Celery's RabbitMQ implementation, and we stumbled upon a great feature called Federation that allows us to partition our task queue across any number of RabbitMQ servers and gives us the confidence that, if any single server gets backlogged, others will pitch in and distribute some of the backlogged tasks to their consumers.

      #MessageQueue

      See more
      Michael Mota

      Automations are what makes a CRM powerful. With Celery and RabbitMQ we've been able to make powerful automations that truly works for our clients. Such as for example, automatic daily reports, reminders for their activities, important notifications regarding their client activities and actions on the website and more.

      We use Celery basically for everything that needs to be scheduled for the future, and using RabbitMQ as our Queue-broker is amazing since it fully integrates with Django and Celery storing on our database results of the tasks done so we can see if anything fails immediately.

      See more
      MQTT logo

      MQTT

      251
      249
      3
      A machine-to-machine Internet of Things connectivity protocol
      251
      249
      + 1
      3

      related MQTT posts