What is Azure Data Factory and what are its top alternatives?
Top Alternatives to Azure Data Factory
- Azure Databricks
Accelerate big data analytics and artificial intelligence (AI) solutions with Azure Databricks, a fast, easy and collaborative Apache Spark–based analytics service. ...
- Talend
It is an open source software integration platform helps you in effortlessly turning data into business insights. It uses native code generation that lets you run your data pipelines seamlessly across all cloud providers and get optimized performance on all platforms. ...
- AWS Data Pipeline
AWS Data Pipeline is a web service that provides a simple management system for data-driven workflows. Using AWS Data Pipeline, you define a pipeline composed of the “data sources” that contain your data, the “activities” or business logic such as EMR jobs or SQL queries, and the “schedule” on which your business logic executes. For example, you could define a job that, every hour, runs an Amazon Elastic MapReduce (Amazon EMR)–based analysis on that hour’s Amazon Simple Storage Service (Amazon S3) log data, loads the results into a relational database for future lookup, and then automatically sends you a daily summary email. ...
- AWS Glue
A fully managed extract, transform, and load (ETL) service that makes it easy for customers to prepare and load their data for analytics. ...
- Apache NiFi
An easy to use, powerful, and reliable system to process and distribute data. It supports powerful and scalable directed graphs of data routing, transformation, and system mediation logic. ...
- Airflow
Use Airflow to author workflows as directed acyclic graphs (DAGs) of tasks. The Airflow scheduler executes your tasks on an array of workers while following the specified dependencies. Rich command lines utilities makes performing complex surgeries on DAGs a snap. The rich user interface makes it easy to visualize pipelines running in production, monitor progress and troubleshoot issues when needed. ...
- Databricks
Databricks Unified Analytics Platform, from the original creators of Apache Spark™, unifies data science and engineering across the Machine Learning lifecycle from data preparation to experimentation and deployment of ML applications. ...
- Apache Spark
Spark is a fast and general processing engine compatible with Hadoop data. It can run in Hadoop clusters through YARN or Spark's standalone mode, and it can process data in HDFS, HBase, Cassandra, Hive, and any Hadoop InputFormat. It is designed to perform both batch processing (similar to MapReduce) and new workloads like streaming, interactive queries, and machine learning. ...
Azure Data Factory alternatives & related posts
related Azure Databricks posts
related Talend posts
AWS Data Pipeline
- Easy to create DAG and execute it1
related AWS Data Pipeline posts
- Managed Hive Metastore8
related AWS Glue posts
Hi,
We are currently storing the data in Amazon S3 using Apache Parquet format. We are using Presto to query the data from S3 and catalog it using AWS Glue catalog. We have Metabase sitting on top of Presto, where our reports are present. Currently, Presto is becoming too costly for us, and we are looking for alternatives for it but want to use the remaining setup (S3, Metabase) as much as possible. Please suggest alternative approaches.
Hey all, I need some suggestions in creating a replica of our RDS DB for reporting and analytical purposes. Cost is a major factor. I was thinking of using AWS Glue to move data from Amazon RDS to Amazon S3 and use Amazon Athena to run queries on it. Any other suggestions would be appreciable.
- Visual Data Flows using Directed Acyclic Graphs (DAGs)15
- Free (Open Source)8
- Simple-to-use7
- Reactive with back-pressure5
- Scalable horizontally as well as vertically5
- Fast prototyping4
- Bi-directional channels3
- Data provenance2
- Built-in graphical user interface2
- End-to-end security between all nodes2
- Can handle messages up to gigabytes in size2
- Hbase support1
- Kudu support1
- Hive support1
- Slack integration1
- Support for custom Processor in Java1
- Lot of articles1
- Lots of documentation1
- HA support is not full fledge2
- Memory-intensive2
related Apache NiFi posts
I am looking for the best tool to orchestrate #ETL workflows in non-Hadoop environments, mainly for regression testing use cases. Would Airflow or Apache NiFi be a good fit for this purpose?
For example, I want to run an Informatica ETL job and then run an SQL task as a dependency, followed by another task from Jira. What tool is best suited to set up such a pipeline?
Airflow
- Features50
- Task Dependency Management14
- Cluster of workers12
- Beautiful UI12
- Extensibility10
- Open source5
- Python5
- Complex workflows4
- Good api3
- Custom operators3
- Dashboard2
- Apache project2
- Running it on kubernetes cluster relatively complex2
- Open source - provides minimum or no support2
- Logical separation of DAGs is not straight forward1
- Observability is not great when the DAGs exceed 2501
related Airflow posts
I am looking for an open-source scheduler tool with cross-functional application dependencies. Some of the tasks I am looking to schedule are as follows:
- Trigger Matillion ETL loads
- Trigger Attunity Replication tasks that have downstream ETL loads
- Trigger Golden gate Replication Tasks
- Shell scripts, wrappers, file watchers
- Event-driven schedules
I have used Airflow in the past, and I know we need to create DAGs for each pipeline. I am not familiar with Jenkins, but I know it works with configuration without much underlying code. I want to evaluate both and appreciate any advise
I am working on a project that grabs a set of input data from AWS S3, pre-processes and divvies it up, spins up 10K batch containers to process the divvied data in parallel on AWS Batch, post-aggregates the data, and pushes it to S3.
I already have software patterns from other projects for Airflow + Batch but have not dealt with the scaling factors of 10k parallel tasks. Airflow is nice since I can look at which tasks failed and retry a task after debugging. But dealing with that many tasks on one Airflow EC2 instance seems like a barrier. Another option would be to have one task that kicks off the 10k containers and monitors it from there.
I have no experience with AWS Step Functions but have heard it's AWS's Airflow. There looks to be plenty of patterns online for Step Functions + Batch. Do Step Functions seem like a good path to check out for my use case? Do you get the same insights on failing jobs / ability to retry tasks as you do with Airflow?
- Best Performances on large datasets1
- True lakehouse architecture1
- Scalability1
- Databricks doesn't get access to your data1
- Usage Based Billing1
- Security1
- Data stays in your cloud account1
- Multicloud1
related Databricks posts
- Open-source59
- Fast and Flexible48
- One platform for every big data problem8
- Great for distributed SQL like applications7
- Easy to install and to use6
- Works well for most Datascience usecases3
- Interactive Query2
- In memory Computation2
- Machine learning libratimery, Streaming in real2
- Speed3
related Apache Spark posts










The algorithms and data infrastructure at Stitch Fix is housed in #AWS. Data acquisition is split between events flowing through Kafka, and periodic snapshots of PostgreSQL DBs. We store data in an Amazon S3 based data warehouse. Apache Spark on Yarn is our tool of choice for data movement and #ETL. Because our storage layer (s3) is decoupled from our processing layer, we are able to scale our compute environment very elastically. We have several semi-permanent, autoscaling Yarn clusters running to serve our data processing needs. While the bulk of our compute infrastructure is dedicated to algorithmic processing, we also implemented Presto for adhoc queries and dashboards.
Beyond data movement and ETL, most #ML centric jobs (e.g. model training and execution) run in a similarly elastic environment as containers running Python and R code on Amazon EC2 Container Service clusters. The execution of batch jobs on top of ECS is managed by Flotilla, a service we built in house and open sourced (see https://github.com/stitchfix/flotilla-os).
At Stitch Fix, algorithmic integrations are pervasive across the business. We have dozens of data products actively integrated systems. That requires serving layer that is robust, agile, flexible, and allows for self-service. Models produced on Flotilla are packaged for deployment in production using Khan, another framework we've developed internally. Khan provides our data scientists the ability to quickly productionize those models they've developed with open source frameworks in Python 3 (e.g. PyTorch, sklearn), by automatically packaging them as Docker containers and deploying to Amazon ECS. This provides our data scientist a one-click method of getting from their algorithms to production. We then integrate those deployments into a service mesh, which allows us to A/B test various implementations in our product.
For more info:
- Our Algorithms Tour: https://algorithms-tour.stitchfix.com/
- Our blog: https://multithreaded.stitchfix.com/blog/
- Careers: https://multithreaded.stitchfix.com/careers/
#DataScience #DataStack #Data
Why we built Marmaray, an open source generic data ingestion and dispersal framework and library for Apache Hadoop :
Built and designed by our Hadoop Platform team, Marmaray is a plug-in-based framework built on top of the Hadoop ecosystem. Users can add support to ingest data from any source and disperse to any sink leveraging the use of Apache Spark . The name, Marmaray, comes from a tunnel in Turkey connecting Europe and Asia. Similarly, we envisioned Marmaray within Uber as a pipeline connecting data from any source to any sink depending on customer preference:
https://eng.uber.com/marmaray-hadoop-ingestion-open-source/
(Direct GitHub repo: https://github.com/uber/marmaray Kafka Kafka Manager )