Alternatives to Clickhouse logo

Alternatives to Clickhouse

Cassandra, Elasticsearch, MySQL, InfluxDB, and Druid are the most popular alternatives and competitors to Clickhouse.
41
13
+ 1
17

What is Clickhouse and what are its top alternatives?

It allows analysis of data that is updated in real time. It offers instant results in most cases: the data is processed faster than it takes to create a query.
Clickhouse is a tool in the Databases category of a tech stack.

Clickhouse alternatives & related posts

Cassandra logo

Cassandra

2K
1.5K
442
2K
1.5K
+ 1
442
A partitioned row store. Rows are organized into tables with a required primary key.
Cassandra logo
Cassandra
VS
Clickhouse logo
Clickhouse

related Cassandra posts

Thierry Schellenbach
Thierry Schellenbach
CEO at Stream · | 17 upvotes · 21.6K views
atStreamStream
RocksDB
RocksDB
Cassandra
Cassandra
Redis
Redis
#Databases
#DataStores
#InMemoryDatabases

1.0 of Stream leveraged Cassandra for storing the feed. Cassandra is a common choice for building feeds. Instagram, for instance started, out with Redis but eventually switched to Cassandra to handle their rapid usage growth. Cassandra can handle write heavy workloads very efficiently.

Cassandra is a great tool that allows you to scale write capacity simply by adding more nodes, though it is also very complex. This complexity made it hard to diagnose performance fluctuations. Even though we had years of experience with running Cassandra, it still felt like a bit of a black box. When building Stream 2.0 we decided to go for a different approach and build Keevo. Keevo is our in-house key-value store built upon RocksDB, gRPC and Raft.

RocksDB is a highly performant embeddable database library developed and maintained by Facebook’s data engineering team. RocksDB started as a fork of Google’s LevelDB that introduced several performance improvements for SSD. Nowadays RocksDB is a project on its own and is under active development. It is written in C++ and it’s fast. Have a look at how this benchmark handles 7 million QPS. In terms of technology it’s much more simple than Cassandra.

This translates into reduced maintenance overhead, improved performance and, most importantly, more consistent performance. It’s interesting to note that LinkedIn also uses RocksDB for their feed.

#InMemoryDatabases #DataStores #Databases

See more
Linux
Linux
Docker
Docker
jQuery
jQuery
AngularJS
AngularJS
React
React
Cassandra
Cassandra
MongoDB
MongoDB
MySQL
MySQL
Zend Framework
Zend Framework
Laravel
Laravel

React AngularJS jQuery

Laravel Zend Framework

MySQL MongoDB Cassandra

Docker

Linux

See more

related Elasticsearch posts

Julien DeFrance
Julien DeFrance
Full Stack Engineering Manager at ValiMail · | 16 upvotes · 267.4K views
atSmartZipSmartZip
Amazon DynamoDB
Amazon DynamoDB
Ruby
Ruby
Node.js
Node.js
AWS Lambda
AWS Lambda
New Relic
New Relic
Amazon Elasticsearch Service
Amazon Elasticsearch Service
Elasticsearch
Elasticsearch
Superset
Superset
Amazon Quicksight
Amazon Quicksight
Amazon Redshift
Amazon Redshift
Zapier
Zapier
Segment
Segment
Amazon CloudFront
Amazon CloudFront
Memcached
Memcached
Amazon ElastiCache
Amazon ElastiCache
Amazon RDS for Aurora
Amazon RDS for Aurora
MySQL
MySQL
Amazon RDS
Amazon RDS
Amazon S3
Amazon S3
Docker
Docker
Capistrano
Capistrano
AWS Elastic Beanstalk
AWS Elastic Beanstalk
Rails API
Rails API
Rails
Rails
Algolia
Algolia

Back in 2014, I was given an opportunity to re-architect SmartZip Analytics platform, and flagship product: SmartTargeting. This is a SaaS software helping real estate professionals keeping up with their prospects and leads in a given neighborhood/territory, finding out (thanks to predictive analytics) who's the most likely to list/sell their home, and running cross-channel marketing automation against them: direct mail, online ads, email... The company also does provide Data APIs to Enterprise customers.

I had inherited years and years of technical debt and I knew things had to change radically. The first enabler to this was to make use of the cloud and go with AWS, so we would stop re-inventing the wheel, and build around managed/scalable services.

For the SaaS product, we kept on working with Rails as this was what my team had the most knowledge in. We've however broken up the monolith and decoupled the front-end application from the backend thanks to the use of Rails API so we'd get independently scalable micro-services from now on.

Our various applications could now be deployed using AWS Elastic Beanstalk so we wouldn't waste any more efforts writing time-consuming Capistrano deployment scripts for instance. Combined with Docker so our application would run within its own container, independently from the underlying host configuration.

Storage-wise, we went with Amazon S3 and ditched any pre-existing local or network storage people used to deal with in our legacy systems. On the database side: Amazon RDS / MySQL initially. Ultimately migrated to Amazon RDS for Aurora / MySQL when it got released. Once again, here you need a managed service your cloud provider handles for you.

Future improvements / technology decisions included:

Caching: Amazon ElastiCache / Memcached CDN: Amazon CloudFront Systems Integration: Segment / Zapier Data-warehousing: Amazon Redshift BI: Amazon Quicksight / Superset Search: Elasticsearch / Amazon Elasticsearch Service / Algolia Monitoring: New Relic

As our usage grows, patterns changed, and/or our business needs evolved, my role as Engineering Manager then Director of Engineering was also to ensure my team kept on learning and innovating, while delivering on business value.

One of these innovations was to get ourselves into Serverless : Adopting AWS Lambda was a big step forward. At the time, only available for Node.js (Not Ruby ) but a great way to handle cost efficiency, unpredictable traffic, sudden bursts of traffic... Ultimately you want the whole chain of services involved in a call to be serverless, and that's when we've started leveraging Amazon DynamoDB on these projects so they'd be fully scalable.

See more
Tim Specht
Tim Specht
‎Co-Founder and CTO at Dubsmash · | 16 upvotes · 52.1K views
atDubsmashDubsmash
Memcached
Memcached
Algolia
Algolia
Elasticsearch
Elasticsearch
#SearchAsAService

Although we were using Elasticsearch in the beginning to power our in-app search, we moved this part of our processing over to Algolia a couple of months ago; this has proven to be a fantastic choice, letting us build search-related features with more confidence and speed.

Elasticsearch is only used for searching in internal tooling nowadays; hosting and running it reliably has been a task that took up too much time for us in the past and fine-tuning the results to reach a great user-experience was also never an easy task for us. With Algolia we can flexibly change ranking methods on the fly and can instead focus our time on fine-tuning the experience within our app.

Memcached is used in front of most of the API endpoints to cache responses in order to speed up response times and reduce server-costs on our side.

#SearchAsAService

See more
MySQL logo

MySQL

22.7K
17.4K
3.7K
22.7K
17.4K
+ 1
3.7K
The world's most popular open source database
MySQL logo
MySQL
VS
Clickhouse logo
Clickhouse

related MySQL posts

Julien DeFrance
Julien DeFrance
Full Stack Engineering Manager at ValiMail · | 16 upvotes · 267.4K views
atSmartZipSmartZip
Amazon DynamoDB
Amazon DynamoDB
Ruby
Ruby
Node.js
Node.js
AWS Lambda
AWS Lambda
New Relic
New Relic
Amazon Elasticsearch Service
Amazon Elasticsearch Service
Elasticsearch
Elasticsearch
Superset
Superset
Amazon Quicksight
Amazon Quicksight
Amazon Redshift
Amazon Redshift
Zapier
Zapier
Segment
Segment
Amazon CloudFront
Amazon CloudFront
Memcached
Memcached
Amazon ElastiCache
Amazon ElastiCache
Amazon RDS for Aurora
Amazon RDS for Aurora
MySQL
MySQL
Amazon RDS
Amazon RDS
Amazon S3
Amazon S3
Docker
Docker
Capistrano
Capistrano
AWS Elastic Beanstalk
AWS Elastic Beanstalk
Rails API
Rails API
Rails
Rails
Algolia
Algolia

Back in 2014, I was given an opportunity to re-architect SmartZip Analytics platform, and flagship product: SmartTargeting. This is a SaaS software helping real estate professionals keeping up with their prospects and leads in a given neighborhood/territory, finding out (thanks to predictive analytics) who's the most likely to list/sell their home, and running cross-channel marketing automation against them: direct mail, online ads, email... The company also does provide Data APIs to Enterprise customers.

I had inherited years and years of technical debt and I knew things had to change radically. The first enabler to this was to make use of the cloud and go with AWS, so we would stop re-inventing the wheel, and build around managed/scalable services.

For the SaaS product, we kept on working with Rails as this was what my team had the most knowledge in. We've however broken up the monolith and decoupled the front-end application from the backend thanks to the use of Rails API so we'd get independently scalable micro-services from now on.

Our various applications could now be deployed using AWS Elastic Beanstalk so we wouldn't waste any more efforts writing time-consuming Capistrano deployment scripts for instance. Combined with Docker so our application would run within its own container, independently from the underlying host configuration.

Storage-wise, we went with Amazon S3 and ditched any pre-existing local or network storage people used to deal with in our legacy systems. On the database side: Amazon RDS / MySQL initially. Ultimately migrated to Amazon RDS for Aurora / MySQL when it got released. Once again, here you need a managed service your cloud provider handles for you.

Future improvements / technology decisions included:

Caching: Amazon ElastiCache / Memcached CDN: Amazon CloudFront Systems Integration: Segment / Zapier Data-warehousing: Amazon Redshift BI: Amazon Quicksight / Superset Search: Elasticsearch / Amazon Elasticsearch Service / Algolia Monitoring: New Relic

As our usage grows, patterns changed, and/or our business needs evolved, my role as Engineering Manager then Director of Engineering was also to ensure my team kept on learning and innovating, while delivering on business value.

One of these innovations was to get ourselves into Serverless : Adopting AWS Lambda was a big step forward. At the time, only available for Node.js (Not Ruby ) but a great way to handle cost efficiency, unpredictable traffic, sudden bursts of traffic... Ultimately you want the whole chain of services involved in a call to be serverless, and that's when we've started leveraging Amazon DynamoDB on these projects so they'd be fully scalable.

See more
Jake Stein
Jake Stein
CEO at Stitch · | 15 upvotes · 50.9K views
atStitchStitch
PostgreSQL
PostgreSQL
MySQL
MySQL
Clojure
Clojure

The majority of our Clojure microservices are simple web services that wrap a transactional database with CRUD operations and a little bit of business logic. We use both MySQL and PostgreSQL for transactional data persistence, having transitioned from the former to the latter for newer services to take advantage of the new features coming out of the Postgres community.

Most of our Clojure best practices can be summed up by the phrase "keep it simple." We avoid more complex web frameworks in favor of using the Ring library to build web service routes, and we prefer sending SQL directly to the JDBC library rather than using a complicated ORM or SQL DSL.

See more
Druid logo

Druid

102
138
17
102
138
+ 1
17
Fast column-oriented distributed data store
Druid logo
Druid
VS
Clickhouse logo
Clickhouse

related MongoDB posts

Jeyabalaji Subramanian
Jeyabalaji Subramanian
CTO at FundsCorner · | 24 upvotes · 198.4K views
atFundsCornerFundsCorner
Zappa
Zappa
AWS Lambda
AWS Lambda
SQLAlchemy
SQLAlchemy
Python
Python
Amazon SQS
Amazon SQS
Node.js
Node.js
MongoDB Stitch
MongoDB Stitch
PostgreSQL
PostgreSQL
MongoDB
MongoDB

Recently we were looking at a few robust and cost-effective ways of replicating the data that resides in our production MongoDB to a PostgreSQL database for data warehousing and business intelligence.

We set ourselves the following criteria for the optimal tool that would do this job: - The data replication must be near real-time, yet it should NOT impact the production database - The data replication must be horizontally scalable (based on the load), asynchronous & crash-resilient

Based on the above criteria, we selected the following tools to perform the end to end data replication:

We chose MongoDB Stitch for picking up the changes in the source database. It is the serverless platform from MongoDB. One of the services offered by MongoDB Stitch is Stitch Triggers. Using stitch triggers, you can execute a serverless function (in Node.js) in real time in response to changes in the database. When there are a lot of database changes, Stitch automatically "feeds forward" these changes through an asynchronous queue.

We chose Amazon SQS as the pipe / message backbone for communicating the changes from MongoDB to our own replication service. Interestingly enough, MongoDB stitch offers integration with AWS services.

In the Node.js function, we wrote minimal functionality to communicate the database changes (insert / update / delete / replace) to Amazon SQS.

Next we wrote a minimal micro-service in Python to listen to the message events on SQS, pickup the data payload & mirror the DB changes on to the target Data warehouse. We implemented source data to target data translation by modelling target table structures through SQLAlchemy . We deployed this micro-service as AWS Lambda with Zappa. With Zappa, deploying your services as event-driven & horizontally scalable Lambda service is dumb-easy.

In the end, we got to implement a highly scalable near realtime Change Data Replication service that "works" and deployed to production in a matter of few days!

See more
Robert Zuber
Robert Zuber
CTO at CircleCI · | 22 upvotes · 88.6K views
atCircleCICircleCI
Amazon S3
Amazon S3
GitHub
GitHub
Redis
Redis
PostgreSQL
PostgreSQL
MongoDB
MongoDB

We use MongoDB as our primary #datastore. Mongo's approach to replica sets enables some fantastic patterns for operations like maintenance, backups, and #ETL.

As we pull #microservices from our #monolith, we are taking the opportunity to build them with their own datastores using PostgreSQL. We also use Redis to cache data we’d never store permanently, and to rate-limit our requests to partners’ APIs (like GitHub).

When we’re dealing with large blobs of immutable data (logs, artifacts, and test results), we store them in Amazon S3. We handle any side-effects of S3’s eventual consistency model within our own code. This ensures that we deal with user requests correctly while writes are in process.

See more
Vertica logo

Vertica

24
4
0
24
4
+ 1
0
Storage platform designed to handle large volumes of data
    Be the first to leave a pro
    Vertica logo
    Vertica
    VS
    Clickhouse logo
    Clickhouse
    PostgreSQL logo

    PostgreSQL

    16.5K
    12.4K
    3.4K
    16.5K
    12.4K
    + 1
    3.4K
    A powerful, open source object-relational database system
    PostgreSQL logo
    PostgreSQL
    VS
    Clickhouse logo
    Clickhouse

    related PostgreSQL posts

    Jeyabalaji Subramanian
    Jeyabalaji Subramanian
    CTO at FundsCorner · | 24 upvotes · 198.4K views
    atFundsCornerFundsCorner
    Zappa
    Zappa
    AWS Lambda
    AWS Lambda
    SQLAlchemy
    SQLAlchemy
    Python
    Python
    Amazon SQS
    Amazon SQS
    Node.js
    Node.js
    MongoDB Stitch
    MongoDB Stitch
    PostgreSQL
    PostgreSQL
    MongoDB
    MongoDB

    Recently we were looking at a few robust and cost-effective ways of replicating the data that resides in our production MongoDB to a PostgreSQL database for data warehousing and business intelligence.

    We set ourselves the following criteria for the optimal tool that would do this job: - The data replication must be near real-time, yet it should NOT impact the production database - The data replication must be horizontally scalable (based on the load), asynchronous & crash-resilient

    Based on the above criteria, we selected the following tools to perform the end to end data replication:

    We chose MongoDB Stitch for picking up the changes in the source database. It is the serverless platform from MongoDB. One of the services offered by MongoDB Stitch is Stitch Triggers. Using stitch triggers, you can execute a serverless function (in Node.js) in real time in response to changes in the database. When there are a lot of database changes, Stitch automatically "feeds forward" these changes through an asynchronous queue.

    We chose Amazon SQS as the pipe / message backbone for communicating the changes from MongoDB to our own replication service. Interestingly enough, MongoDB stitch offers integration with AWS services.

    In the Node.js function, we wrote minimal functionality to communicate the database changes (insert / update / delete / replace) to Amazon SQS.

    Next we wrote a minimal micro-service in Python to listen to the message events on SQS, pickup the data payload & mirror the DB changes on to the target Data warehouse. We implemented source data to target data translation by modelling target table structures through SQLAlchemy . We deployed this micro-service as AWS Lambda with Zappa. With Zappa, deploying your services as event-driven & horizontally scalable Lambda service is dumb-easy.

    In the end, we got to implement a highly scalable near realtime Change Data Replication service that "works" and deployed to production in a matter of few days!

    See more
    Robert Zuber
    Robert Zuber
    CTO at CircleCI · | 22 upvotes · 88.6K views
    atCircleCICircleCI
    Amazon S3
    Amazon S3
    GitHub
    GitHub
    Redis
    Redis
    PostgreSQL
    PostgreSQL
    MongoDB
    MongoDB

    We use MongoDB as our primary #datastore. Mongo's approach to replica sets enables some fantastic patterns for operations like maintenance, backups, and #ETL.

    As we pull #microservices from our #monolith, we are taking the opportunity to build them with their own datastores using PostgreSQL. We also use Redis to cache data we’d never store permanently, and to rate-limit our requests to partners’ APIs (like GitHub).

    When we’re dealing with large blobs of immutable data (logs, artifacts, and test results), we store them in Amazon S3. We handle any side-effects of S3’s eventual consistency model within our own code. This ensures that we deal with user requests correctly while writes are in process.

    See more

    related Microsoft SQL Server posts

    Amazon ElastiCache
    Amazon ElastiCache
    Amazon Elasticsearch Service
    Amazon Elasticsearch Service
    AWS Elastic Load Balancing (ELB)
    AWS Elastic Load Balancing (ELB)
    Memcached
    Memcached
    Redis
    Redis
    Python
    Python
    AWS Lambda
    AWS Lambda
    Amazon RDS
    Amazon RDS
    Microsoft SQL Server
    Microsoft SQL Server
    MariaDB
    MariaDB
    Amazon RDS for PostgreSQL
    Amazon RDS for PostgreSQL
    Rails
    Rails
    Ruby
    Ruby
    Heroku
    Heroku
    AWS Elastic Beanstalk
    AWS Elastic Beanstalk

    We initially started out with Heroku as our PaaS provider due to a desire to use it by our original developer for our Ruby on Rails application/website at the time. We were finding response times slow, it was painfully slow, sometimes taking 10 seconds to start loading the main page. Moving up to the next "compute" level was going to be very expensive.

    We moved our site over to AWS Elastic Beanstalk , not only did response times on the site practically become instant, our cloud bill for the application was cut in half.

    In database world we are currently using Amazon RDS for PostgreSQL also, we have both MariaDB and Microsoft SQL Server both hosted on Amazon RDS. The plan is to migrate to AWS Aurora Serverless for all 3 of those database systems.

    Additional services we use for our public applications: AWS Lambda, Python, Redis, Memcached, AWS Elastic Load Balancing (ELB), Amazon Elasticsearch Service, Amazon ElastiCache

    See more

    related MariaDB posts

    Amazon ElastiCache
    Amazon ElastiCache
    Amazon Elasticsearch Service
    Amazon Elasticsearch Service
    AWS Elastic Load Balancing (ELB)
    AWS Elastic Load Balancing (ELB)
    Memcached
    Memcached
    Redis
    Redis
    Python
    Python
    AWS Lambda
    AWS Lambda
    Amazon RDS
    Amazon RDS
    Microsoft SQL Server
    Microsoft SQL Server
    MariaDB
    MariaDB
    Amazon RDS for PostgreSQL
    Amazon RDS for PostgreSQL
    Rails
    Rails
    Ruby
    Ruby
    Heroku
    Heroku
    AWS Elastic Beanstalk
    AWS Elastic Beanstalk

    We initially started out with Heroku as our PaaS provider due to a desire to use it by our original developer for our Ruby on Rails application/website at the time. We were finding response times slow, it was painfully slow, sometimes taking 10 seconds to start loading the main page. Moving up to the next "compute" level was going to be very expensive.

    We moved our site over to AWS Elastic Beanstalk , not only did response times on the site practically become instant, our cloud bill for the application was cut in half.

    In database world we are currently using Amazon RDS for PostgreSQL also, we have both MariaDB and Microsoft SQL Server both hosted on Amazon RDS. The plan is to migrate to AWS Aurora Serverless for all 3 of those database systems.

    Additional services we use for our public applications: AWS Lambda, Python, Redis, Memcached, AWS Elastic Load Balancing (ELB), Amazon Elasticsearch Service, Amazon ElastiCache

    See more
    Joshua Dean Küpper
    Joshua Dean Küpper
    CEO at Scrayos UG (haftungsbeschränkt) · | 4 upvotes · 26.5K views
    atScrayos UG (haftungsbeschränkt)Scrayos UG (haftungsbeschränkt)
    Sentry
    Sentry
    GitLab
    GitLab
    PostgreSQL
    PostgreSQL
    MariaDB
    MariaDB

    We primarily use MariaDB but use PostgreSQL as a part of GitLab , Sentry and @Nextcloud , which (initially) forced us to use it anyways. While this isn't much of a decision – because we didn't have one (ha ha) – we learned to love the perks and advantages of PostgreSQL anyways. PostgreSQLs extension system makes it even more flexible than a lot of the other SQL-based DBs (that only offer stored procedures) and the additional JOIN options, the enhanced role management and the different authentication options came in really handy, when doing manual maintenance on the databases.

    See more
    SQLite logo

    SQLite

    3.3K
    2.5K
    504
    3.3K
    2.5K
    + 1
    504
    A software library that implements a self-contained, serverless, zero-configuration, transactional SQL database engine
    SQLite logo
    SQLite
    VS
    Clickhouse logo
    Clickhouse

    related SQLite posts

    Daniel Quinn
    Daniel Quinn
    Senior Developer at Founders4Schools · | 2 upvotes · 11.4K views
    atThe Paperless ProjectThe Paperless Project
    PostgreSQL
    PostgreSQL
    SQLite
    SQLite

    SQLite is a tricky beast. It's great if you're working single-threaded, but a Terrible Idea if you've got more than one concurrent connection. You use it because it's easy to setup, light, and portable (it's just a file).

    In Paperless, we've built a self-hosted web application, so it makes sense to standardise on something small & light, and as we don't have to worry about multiple connections (it's just you using the app), it's a perfect fit.

    For users wanting to scale Paperless up to a multi-user environment though, we do provide the hooks to switch to PostgreSQL .

    See more
    PostgreSQL
    PostgreSQL
    SQLite
    SQLite

    SQLite for development, PostgreSQL SQL for production databases.

    See more
    Memcached logo

    Memcached

    2.6K
    1.6K
    452
    2.6K
    1.6K
    + 1
    452
    High-performance, distributed memory object caching system
    Memcached logo
    Memcached
    VS
    Clickhouse logo
    Clickhouse

    related Memcached posts

    Julien DeFrance
    Julien DeFrance
    Full Stack Engineering Manager at ValiMail · | 16 upvotes · 267.4K views
    atSmartZipSmartZip
    Amazon DynamoDB
    Amazon DynamoDB
    Ruby
    Ruby
    Node.js
    Node.js
    AWS Lambda
    AWS Lambda
    New Relic
    New Relic
    Amazon Elasticsearch Service
    Amazon Elasticsearch Service
    Elasticsearch
    Elasticsearch
    Superset
    Superset
    Amazon Quicksight
    Amazon Quicksight
    Amazon Redshift
    Amazon Redshift
    Zapier
    Zapier
    Segment
    Segment
    Amazon CloudFront
    Amazon CloudFront
    Memcached
    Memcached
    Amazon ElastiCache
    Amazon ElastiCache
    Amazon RDS for Aurora
    Amazon RDS for Aurora
    MySQL
    MySQL
    Amazon RDS
    Amazon RDS
    Amazon S3
    Amazon S3
    Docker
    Docker
    Capistrano
    Capistrano
    AWS Elastic Beanstalk
    AWS Elastic Beanstalk
    Rails API
    Rails API
    Rails
    Rails
    Algolia
    Algolia

    Back in 2014, I was given an opportunity to re-architect SmartZip Analytics platform, and flagship product: SmartTargeting. This is a SaaS software helping real estate professionals keeping up with their prospects and leads in a given neighborhood/territory, finding out (thanks to predictive analytics) who's the most likely to list/sell their home, and running cross-channel marketing automation against them: direct mail, online ads, email... The company also does provide Data APIs to Enterprise customers.

    I had inherited years and years of technical debt and I knew things had to change radically. The first enabler to this was to make use of the cloud and go with AWS, so we would stop re-inventing the wheel, and build around managed/scalable services.

    For the SaaS product, we kept on working with Rails as this was what my team had the most knowledge in. We've however broken up the monolith and decoupled the front-end application from the backend thanks to the use of Rails API so we'd get independently scalable micro-services from now on.

    Our various applications could now be deployed using AWS Elastic Beanstalk so we wouldn't waste any more efforts writing time-consuming Capistrano deployment scripts for instance. Combined with Docker so our application would run within its own container, independently from the underlying host configuration.

    Storage-wise, we went with Amazon S3 and ditched any pre-existing local or network storage people used to deal with in our legacy systems. On the database side: Amazon RDS / MySQL initially. Ultimately migrated to Amazon RDS for Aurora / MySQL when it got released. Once again, here you need a managed service your cloud provider handles for you.

    Future improvements / technology decisions included:

    Caching: Amazon ElastiCache / Memcached CDN: Amazon CloudFront Systems Integration: Segment / Zapier Data-warehousing: Amazon Redshift BI: Amazon Quicksight / Superset Search: Elasticsearch / Amazon Elasticsearch Service / Algolia Monitoring: New Relic

    As our usage grows, patterns changed, and/or our business needs evolved, my role as Engineering Manager then Director of Engineering was also to ensure my team kept on learning and innovating, while delivering on business value.

    One of these innovations was to get ourselves into Serverless : Adopting AWS Lambda was a big step forward. At the time, only available for Node.js (Not Ruby ) but a great way to handle cost efficiency, unpredictable traffic, sudden bursts of traffic... Ultimately you want the whole chain of services involved in a call to be serverless, and that's when we've started leveraging Amazon DynamoDB on these projects so they'd be fully scalable.

    See more
    Kir Shatrov
    Kir Shatrov
    Production Engineer at Shopify · | 13 upvotes · 84.4K views
    at