What is Django Channels and what are its top alternatives?
Django Channels is a Python library that extends Django to handle WebSockets, chat protocols, and other real-time features. Its key features include handling multiple protocols, background tasks, and channel layers for communication and message passing. However, one of its limitations is that it can be complex to set up and debug.
- Tornado: Tornado is a scalable, non-blocking web server and web application framework that can handle long-lived connections. It has built-in support for WebSockets and asynchronous I/O operations. Pros: High performance, easy to use. Cons: Limited Django integration.
- Flask-SocketIO: Flask-SocketIO is a Flask extension that adds WebSocket support to your Flask applications. It simplifies the integration of WebSocket communication with Flask and provides real-time features. Pros: Easy to integrate with Flask, lightweight. Cons: Limited features compared to Django Channels.
- FastAPI: FastAPI is a modern, fast web framework for building APIs with Python 3.6+ based on standard Python type hints. It includes built-in support for asynchronous operations and is capable of handling WebSocket connections. Pros: High performance, easy to use. Cons: Less mature than Django Channels.
- Celery: Celery is an asynchronous task queue/job queue based on distributed message passing. It can be used in conjunction with Django to handle background tasks and real-time features. Pros: Scalable, easy to use. Cons: Requires additional setup compared to Django Channels.
- AIOHTTP: AIOHTTP is a Python library for building asynchronous HTTP and WebSocket clients and servers. It offers a lightweight and scalable framework for handling real-time features in Python applications. Pros: Asynchronous, high performance. Cons: May require more manual configuration than Django Channels.
- SocketCluster: SocketCluster is a real-time, highly scalable JavaScript framework for building distributed systems with WebSocket support. It can be used as an alternative to Django Channels for handling real-time features in web applications. Pros: Scalable, easy to use. Cons: Requires JavaScript knowledge.
- Socket.IO: Socket.IO is a popular JavaScript library for real-time web applications. It provides WebSocket support along with fallbacks for older browsers and long-polling. It can be integrated with Python frameworks like Flask and Django. Pros: Wide browser support, easy to use. Cons: May require additional setup for Python integration.
- Nchan: Nchan is a fast, flexible pub/sub server written in C that can be used as a standalone server or integrated with web servers like Nginx. It provides support for WebSocket connections and can handle real-time features in web applications. Pros: High performance, easy integration with Nginx. Cons: Less Python-focused than Django Channels.
- Pusher: Pusher is a hosted service that provides real-time communication capabilities for web and mobile applications. It offers SDKs for various programming languages, including Python, and can be used as an alternative to implementing real-time features with Django Channels. Pros: Managed service, easy to use. Cons: Limited control compared to self-hosted solutions like Django Channels.
- Sails.js: Sails.js is a Node.js MVC framework that provides support for building real-time web applications using WebSockets. It offers an easy-to-use API for handling real-time features and can be an alternative to Django Channels for projects that prefer a Node.js-based solution. Pros: JavaScript-based, scalable. Cons: Requires a different technology stack than Django Channels.
Top Alternatives to Django Channels
- Twisted
Twisted is an event-driven networking engine written in Python and licensed under the open source MIT license. Twisted runs on Python 2 and an ever growing subset also works with Python 3. Twisted also supports many common network protocols, including SMTP, POP3, IMAP, SSHv2, and DNS. ...
- Tornado
By using non-blocking network I/O, Tornado can scale to tens of thousands of open connections, making it ideal for long polling, WebSockets, and other applications that require a long-lived connection to each user. ...
- Celery
Celery is an asynchronous task queue/job queue based on distributed message passing. It is focused on real-time operation, but supports scheduling as well. ...
- Pushpin
Pushpin is a reverse proxy server that makes it easy to build realtime web services. The project is unique among realtime push solutions in that it is designed to address the needs of API creators. ...
- asyncio
This module provides infrastructure for writing single-threaded concurrent code using coroutines, multiplexing I/O access over sockets and other resources, running network clients and servers, and other related primitives. ...
- REST
An architectural style for developing web services. A distributed system framework that uses Web protocols and technologies. ...
- JavaScript
JavaScript is most known as the scripting language for Web pages, but used in many non-browser environments as well such as node.js or Apache CouchDB. It is a prototype-based, multi-paradigm scripting language that is dynamic,and supports object-oriented, imperative, and functional programming styles. ...
- Python
Python is a general purpose programming language created by Guido Van Rossum. Python is most praised for its elegant syntax and readable code, if you are just beginning your programming career python suits you best. ...
Django Channels alternatives & related posts
- Easy-to-understand concurrency5
- Twisted prevails3
- It works1
- Solid, flexible, powerful1
related Twisted posts
Tornado
- Open source37
- So fast31
- Great for microservices architecture27
- Websockets20
- Simple17
- Asynchronous14
- Python11
- Lightweight7
- Handles well persistent connexions3
- Event loop is complicated2
related Tornado posts
The 350M API requests we handle daily include many processing tasks such as image enhancements, resizing, filtering, face recognition, and GIF to video conversions.
Tornado is the one we currently use and aiohttp is the one we intend to implement in production in the near future. Both tools support handling huge amounts of requests but aiohttp is preferable as it uses asyncio which is Python-native. Since Python is in the heart of our service, we initially used PIL followed by Pillow. We kind of still do. When we figured resizing was the most taxing processing operation, Alex, our engineer, created the fork named Pillow-SIMD and implemented a good number of optimizations into it to make it 15 times faster than ImageMagick
Thanks to the optimizations, Uploadcare now needs six times fewer servers to process images. Here, by servers I also mean separate Amazon EC2 instances handling processing and the first layer of caching. The processing instances are also paired with AWS Elastic Load Balancing (ELB) which helps ingest files to the CDN.
Around the time of their Series A, Pinterest’s stack included Python and Django, with Tornado and Node.js as web servers. Memcached / Membase and Redis handled caching, with RabbitMQ handling queueing. Nginx, HAproxy and Varnish managed static-delivery and load-balancing, with persistent data storage handled by MySQL.
- Task queue99
- Python integration63
- Django integration40
- Scheduled Task30
- Publish/subsribe19
- Various backend broker8
- Easy to use6
- Great community5
- Workflow5
- Free4
- Dynamic1
- Sometimes loses tasks4
- Depends on broker1
related Celery posts
Sentry started as (and remains) an open-source project, growing out of an error logging tool built in 2008. That original build nine years ago was Django and Celery (Python’s asynchronous task codebase), with PostgreSQL as the database and Redis as the power behind Celery.
We displayed a truly shrewd notion of branding even then, giving the project a catchy name that companies the world over remain jealous of to this day: django-db-log. For the longest time, Sentry’s subtitle on GitHub was “A simple Django app, built with love.” A slightly more accurate description probably would have included Starcraft and Soylent alongside love; regardless, this captured what Sentry was all about.
#MessageQueue #InMemoryDatabases
As Sentry runs throughout the day, there are about 50 different offline tasks that we execute—anything from “process this event, pretty please” to “send all of these cool people some emails.” There are some that we execute once a day and some that execute thousands per second.
Managing this variety requires a reliably high-throughput message-passing technology. We use Celery's RabbitMQ implementation, and we stumbled upon a great feature called Federation that allows us to partition our task queue across any number of RabbitMQ servers and gives us the confidence that, if any single server gets backlogged, others will pitch in and distribute some of the backlogged tasks to their consumers.
#MessageQueue
- Open source3
- Worst community support1
related Pushpin posts
- Cooperative Multitasking4
- I/O Wait4
- Network Call3
- I/O bound computation2
related asyncio posts
I love Python and JavaScript . You can do the same JavaScript async operations in Python by using asyncio. This is particularly useful when you need to do socket programming in Python. With streaming sockets, data can be sent or received at any time. In case your Python program is in the middle of executing some code, other threads can handle the new socket data. Libraries like asyncio implement multiple threads, so your Python program can work in an asynchronous fashion. PubNub makes bi-directional data streaming between devices even easier.
Investigating Tortoise ORM and GINO ORM...
I need to introduce some async ORM with the current stack: Tornado with asyncio loop, AIOHTTP, with PostgreSQL and MSSQL. This project revolves heavily around realtime and due to the realtime requirements, blocking during database access is not acceptable.
Considering that these ORMs are both young projects, I wondered if anybody had some experience with similar stack and these async ORMs?
- Popularity4
related REST posts
JavaScript
- Can be used on frontend/backend1.7K
- It's everywhere1.5K
- Lots of great frameworks1.2K
- Fast899
- Light weight746
- Flexible425
- You can't get a device today that doesn't run js392
- Non-blocking i/o286
- Ubiquitousness237
- Expressive191
- Extended functionality to web pages55
- Relatively easy language49
- Executed on the client side46
- Relatively fast to the end user30
- Pure Javascript25
- Functional programming21
- Async15
- Full-stack13
- Future Language of The Web12
- Setup is easy12
- Its everywhere12
- Because I love functions11
- JavaScript is the New PHP11
- Like it or not, JS is part of the web standard10
- Expansive community9
- Everyone use it9
- Can be used in backend, frontend and DB9
- Easy9
- Easy to hire developers8
- No need to use PHP8
- For the good parts8
- Can be used both as frontend and backend as well8
- Powerful8
- Most Popular Language in the World8
- Its fun and fast7
- It's fun7
- Nice7
- Versitile7
- Hard not to use7
- Popularized Class-Less Architecture & Lambdas7
- Agile, packages simple to use7
- Supports lambdas and closures7
- Love-hate relationship7
- Photoshop has 3 JS runtimes built in7
- Evolution of C7
- Easy to make something6
- It let's me use Babel & Typescript6
- Client side JS uses the visitors CPU to save Server Res6
- Can be used on frontend/backend/Mobile/create PRO Ui6
- 1.6K Can be used on frontend/backend6
- Client processing5
- What to add5
- Stockholm Syndrome5
- Function expressions are useful for callbacks5
- Scope manipulation5
- Everywhere5
- Promise relationship5
- Clojurescript5
- Because it is so simple and lightweight4
- Only Programming language on browser4
- Not the best1
- Hard to learn1
- Test1
- Easy to learn1
- Subskill #41
- Easy to learn and test1
- Love it1
- Test21
- Easy to understand1
- Hard 彤0
- A constant moving target, too much churn22
- Horribly inconsistent20
- Javascript is the New PHP15
- No ability to monitor memory utilitization9
- Shows Zero output in case of ANY error8
- Thinks strange results are better than errors7
- Can be ugly6
- No GitHub3
- Slow2
- HORRIBLE DOCUMENTS, faulty code, repo has bugs0
related JavaScript posts
Oof. I have truly hated JavaScript for a long time. Like, for over twenty years now. Like, since the Clinton administration. It's always been a nightmare to deal with all of the aspects of that silly language.
But wowza, things have changed. Tooling is just way, way better. I'm primarily web-oriented, and using React and Apollo together the past few years really opened my eyes to building rich apps. And I deeply apologize for using the phrase rich apps; I don't think I've ever said such Enterprisey words before.
But yeah, things are different now. I still love Rails, and still use it for a lot of apps I build. But it's that silly rich apps phrase that's the problem. Users have way more comprehensive expectations than they did even five years ago, and the JS community does a good job at building tools and tech that tackle the problems of making heavy, complicated UI and frontend work.
Obviously there's a lot of things happening here, so just saying "JavaScript isn't terrible" might encompass a huge amount of libraries and frameworks. But if you're like me, yeah, give things another shot- I'm somehow not hating on JavaScript anymore and... gulp... I kinda love it.
How Uber developed the open source, end-to-end distributed tracing Jaeger , now a CNCF project:
Distributed tracing is quickly becoming a must-have component in the tools that organizations use to monitor their complex, microservice-based architectures. At Uber, our open source distributed tracing system Jaeger saw large-scale internal adoption throughout 2016, integrated into hundreds of microservices and now recording thousands of traces every second.
Here is the story of how we got here, from investigating off-the-shelf solutions like Zipkin, to why we switched from pull to push architecture, and how distributed tracing will continue to evolve:
https://eng.uber.com/distributed-tracing/
(GitHub Pages : https://www.jaegertracing.io/, GitHub: https://github.com/jaegertracing/jaeger)
Bindings/Operator: Python Java Node.js Go C++ Kubernetes JavaScript OpenShift C# Apache Spark
Python
- Great libraries1.2K
- Readable code964
- Beautiful code847
- Rapid development788
- Large community691
- Open source438
- Elegant393
- Great community282
- Object oriented273
- Dynamic typing221
- Great standard library77
- Very fast60
- Functional programming55
- Easy to learn51
- Scientific computing46
- Great documentation35
- Productivity29
- Easy to read28
- Matlab alternative28
- Simple is better than complex24
- It's the way I think20
- Imperative19
- Very programmer and non-programmer friendly18
- Free18
- Powerfull language17
- Machine learning support17
- Fast and simple16
- Scripting14
- Explicit is better than implicit12
- Ease of development11
- Clear and easy and powerfull10
- Unlimited power9
- Import antigravity8
- It's lean and fun to code8
- Print "life is short, use python"7
- Python has great libraries for data processing7
- Rapid Prototyping6
- Readability counts6
- Now is better than never6
- Great for tooling6
- Flat is better than nested6
- Although practicality beats purity6
- I love snakes6
- High Documented language6
- There should be one-- and preferably only one --obvious6
- Fast coding and good for competitions6
- Web scraping5
- Lists, tuples, dictionaries5
- Great for analytics5
- Easy to setup and run smooth4
- Easy to learn and use4
- Plotting4
- Beautiful is better than ugly4
- Multiple Inheritence4
- Socially engaged community4
- Complex is better than complicated4
- CG industry needs4
- Simple and easy to learn4
- It is Very easy , simple and will you be love programmi3
- Flexible and easy3
- Many types of collections3
- If the implementation is easy to explain, it may be a g3
- If the implementation is hard to explain, it's a bad id3
- Special cases aren't special enough to break the rules3
- Pip install everything3
- List comprehensions3
- No cruft3
- Generators3
- Import this3
- Powerful language for AI3
- Can understand easily who are new to programming2
- Should START with this but not STICK with This2
- A-to-Z2
- Because of Netflix2
- Only one way to do it2
- Better outcome2
- Batteries included2
- Good for hacking2
- Securit2
- Procedural programming1
- Best friend for NLP1
- Slow1
- Automation friendly1
- Sexy af1
- Ni0
- Keep it simple0
- Powerful0
- Still divided between python 2 and python 353
- Performance impact28
- Poor syntax for anonymous functions26
- GIL22
- Package management is a mess19
- Too imperative-oriented14
- Hard to understand12
- Dynamic typing12
- Very slow12
- Indentations matter a lot8
- Not everything is expression8
- Incredibly slow7
- Explicit self parameter in methods7
- Requires C functions for dynamic modules6
- Poor DSL capabilities6
- No anonymous functions6
- Fake object-oriented programming5
- Threading5
- The "lisp style" whitespaces5
- Official documentation is unclear.5
- Hard to obfuscate5
- Circular import5
- Lack of Syntax Sugar leads to "the pyramid of doom"4
- The benevolent-dictator-for-life quit4
- Not suitable for autocomplete4
- Meta classes2
- Training wheels (forced indentation)1
related Python posts
How Uber developed the open source, end-to-end distributed tracing Jaeger , now a CNCF project:
Distributed tracing is quickly becoming a must-have component in the tools that organizations use to monitor their complex, microservice-based architectures. At Uber, our open source distributed tracing system Jaeger saw large-scale internal adoption throughout 2016, integrated into hundreds of microservices and now recording thousands of traces every second.
Here is the story of how we got here, from investigating off-the-shelf solutions like Zipkin, to why we switched from pull to push architecture, and how distributed tracing will continue to evolve:
https://eng.uber.com/distributed-tracing/
(GitHub Pages : https://www.jaegertracing.io/, GitHub: https://github.com/jaegertracing/jaeger)
Bindings/Operator: Python Java Node.js Go C++ Kubernetes JavaScript OpenShift C# Apache Spark
Winds 2.0 is an open source Podcast/RSS reader developed by Stream with a core goal to enable a wide range of developers to contribute.
We chose JavaScript because nearly every developer knows or can, at the very least, read JavaScript. With ES6 and Node.js v10.x.x, it’s become a very capable language. Async/Await is powerful and easy to use (Async/Await vs Promises). Babel allows us to experiment with next-generation JavaScript (features that are not in the official JavaScript spec yet). Yarn allows us to consistently install packages quickly (and is filled with tons of new tricks)
We’re using JavaScript for everything – both front and backend. Most of our team is experienced with Go and Python, so Node was not an obvious choice for this app.
Sure... there will be haters who refuse to acknowledge that there is anything remotely positive about JavaScript (there are even rants on Hacker News about Node.js); however, without writing completely in JavaScript, we would not have seen the results we did.
#FrameworksFullStack #Languages