What is Elasticsearch?
Who uses Elasticsearch?
Elasticsearch Integrations
Here are some stack decisions, common use cases and reviews by companies and developers who chose Elasticsearch in their tech stack.
In 2012 we made the very difficult decision to entirely re-engineer our existing monolithic LAMP application from the ground up in order to address some growing concerns about it's long term viability as a platform.
Full application re-write is almost always never the answer, because of the risks involved. However the situation warranted drastic action as it was clear that the existing product was going to face severe scaling issues. We felt it better address these sooner rather than later and also take the opportunity to improve the international architecture and also to refactor the database in. order that it better matched the changes in core functionality.
PostgreSQL was chosen for its reputation as being solid ACID compliant database backend, it was available as an offering AWS RDS service which reduced the management overhead of us having to configure it ourselves. In order to reduce read load on the primary database we implemented an Elasticsearch layer for fast and scalable search operations. Synchronisation of these indexes was to be achieved through the use of Sidekiq's Redis based background workers on Amazon ElastiCache. Again the AWS solution here looked to be an easy way to keep our involvement in managing this part of the platform at a minimum. Allowing us to focus on our core business.
Rails ls was chosen for its ability to quickly get core functionality up and running, its MVC architecture and also its focus on Test Driven Development using RSpec and Selenium with Travis CI providing continual integration. We also liked Ruby for its terse, clean and elegant syntax. Though YMMV on that one!
Unicorn was chosen for its continual deployment and reputation as a reliable application server, nginx for its reputation as a fast and stable reverse-proxy. We also took advantage of the Amazon CloudFront CDN here to further improve performance by caching static assets globally.
We tried to strike a balance between having control over management and configuration of our core application with the convenience of being able to leverage AWS hosted services for ancillary functions (Amazon SES , Amazon SQS Amazon Route 53 all hosted securely inside Amazon VPC of course!).
Whilst there is some compromise here with potential vendor lock in, the tasks being performed by these ancillary services are no particularly specialised which should mitigate this risk. Furthermore we have already containerised the stack in our development using Docker environment, and looking to how best to bring this into production - potentially using Amazon EC2 Container Service
I would like to assess search functionality along with some analytical use cases like aggregating, faceting etc.,. I would like to know which is the best database to go with among Elasticsearch, MongoDB and FaunaDB.
Hi, I need advice on which Database tool to use in the following scenario:
I work with Cesium, and I need to save and load CZML snapshot and update objects for a recording program that saves files containing several entities (along with the time of the snapshot or update). I need to be able to easily load the files according to the corresponding timeline point (for example, if the update was recorded at 13:15, I should be able to easily load the update file when I click on the 13:15 point on the timeline). I should also be able to make geo-queries relatively easily.
I am currently thinking about Elasticsearch or PostgreSQL, but I am open to suggestions. I tried looking into Time Series Databases like TimescaleDB but found that it is unnecessarily powerful than my needs since the update time is a simple variable.
Thanks for your advice in advance!
We have a Kafka topic having events of type A and type B. We need to perform an inner join on both type of events using some common field (primary-key). The joined events to be inserted in Elasticsearch.
In usual cases, type A and type B events (with same key) observed to be close upto 15 minutes. But in some cases they may be far from each other, lets say 6 hours. Sometimes event of either of the types never come.
In all cases, we should be able to find joined events instantly after they are joined and not-joined events within 15 minutes.
Hi, We have a situation, where we are using Prometheus to get system metrics from PCF (Pivotal Cloud Foundry) platform. We send that as time-series data to Cortex via a Prometheus server and built a dashboard using Grafana. There is another pipeline where we need to read metrics from a Linux server using Metricbeat, CPU, memory, and Disk. That will be sent to Elasticsearch and Grafana will pull and show the data in a dashboard.
Is it OK to use Metricbeat for Linux server or can we use Prometheus?
What is the difference in system metrics sent by Metricbeat and Prometheus node exporters?
Regards, Sunil.
Blog Posts
Elasticsearch's Features
- Distributed and Highly Available Search Engine
- Multi Tenant with Multi Types
- Various set of APIs including RESTful
- Clients available in many languages including Java, Python, .NET, C#, Groovy, and more
- Document oriented
- Reliable, Asynchronous Write Behind for long term persistency
- (Near) Real Time Search
- Built on top of Apache Lucene
- Per operation consistency
- Inverted indices with finite state transducers for full-text querying
- BKD trees for storing numeric and geo data
- Column store for analytics
- Compatible with Hadoop using the ES-Hadoop connector
- Open Source under Apache 2 and Elastic License