Alternatives to EventBus logo

Alternatives to EventBus

RxJava, Otto, RxJS, vuex, and Git are the most popular alternatives and competitors to EventBus.
67
0

What is EventBus and what are its top alternatives?

EventBus is a popular publish/subscribe event bus for Android applications. It allows different components in an application to communicate with each other without having direct dependencies. Key features of EventBus include simplifying communication between different parts of an app, reducing coupling between components, and promoting decoupling and code modularity. However, EventBus can lead to potential issues like memory leaks and difficulty in tracking event flow in complex applications.

  1. RxJava: RxJava is a library for composing asynchronous and event-based programs using observable sequences. It provides a powerful and flexible way to handle events in Android applications.
  2. LocalBroadcastManager: LocalBroadcastManager is a class in the Android Support Library that allows you to send broadcasts within your application.
  3. LiveData: LiveData is an observable data holder class in Android's Architecture Components that is lifecycle-aware.
  4. GreenRobot's Eventbus: GreenRobot's Eventbus is an event bus library for Android and Java applications that simplifies communication between different parts of an app.
  5. Square's Otto: Otto is an event bus designed to decouple different parts of your application while still efficiently passing events.
  6. BroadcastReceiver: BroadcastReceiver is an Android component that enables you to listen for specific system or application events.
  7. Bus: Bus is a lightweight Android event bus library that simplifies communication between different components in an application.
  8. Peppy: Peppy is a lightweight event bus library that can be used in Android applications to handle communication between different parts of the app.
  9. Kotlin's Coroutines: Kotlin's Coroutines provide a way to perform asynchronous programming in a more sequential and readable manner.
  10. EventFlow: EventFlow is a library that aims to make event handling more streamlined and efficient in Android applications.

Top Alternatives to EventBus

  • RxJava
    RxJava

    A library for composing asynchronous and event-based programs by using observable sequences for the Java VM. ...

  • Otto
    Otto

    Otto automatically builds development environments without any configuration; it can detect your project type and has built-in knowledge of industry-standard tools to setup a development environment that is ready to go. When you're ready to deploy, otto builds and manages an infrastructure, sets up servers, builds, and deploys the application. ...

  • RxJS
    RxJS

    RxJS is a library for reactive programming using Observables, to make it easier to compose asynchronous or callback-based code. This project is a rewrite of Reactive-Extensions/RxJS with better performance, better modularity, better debuggable call stacks, while staying mostly backwards compatible, with some breaking changes that reduce the API surface. ...

  • vuex
    vuex

    Vuex is a state management pattern + library for Vue.js applications. It serves as a centralized store for all the components in an application, with rules ensuring that the state can only be mutated in a predictable fashion. It also integrates with Vue's official devtools extension to provide advanced features such as zero-config time-travel debugging and state snapshot export / import. ...

  • Git
    Git

    Git is a free and open source distributed version control system designed to handle everything from small to very large projects with speed and efficiency. ...

  • GitHub
    GitHub

    GitHub is the best place to share code with friends, co-workers, classmates, and complete strangers. Over three million people use GitHub to build amazing things together. ...

  • Visual Studio Code
    Visual Studio Code

    Build and debug modern web and cloud applications. Code is free and available on your favorite platform - Linux, Mac OSX, and Windows. ...

  • Docker
    Docker

    The Docker Platform is the industry-leading container platform for continuous, high-velocity innovation, enabling organizations to seamlessly build and share any application — from legacy to what comes next — and securely run them anywhere ...

EventBus alternatives & related posts

RxJava logo

RxJava

389
174
1
Reactive Extensions for the JVM
389
174
+ 1
1
PROS OF RXJAVA
  • 1
    Reactive Libraries as per Reactive Manifesto
CONS OF RXJAVA
    Be the first to leave a con

    related RxJava posts

    Luis Pena
    Cloud Solution Architect at AWS · | 2 upvotes · 177.4K views
    Shared insights
    on
    QuarkusQuarkusRxJavaRxJava

    Can I mix RxJava with Quarkus?

    See more
    Otto logo

    Otto

    28
    86
    18
    Development and Deployment Made Easy. The successor to Vagrant
    28
    86
    + 1
    18
    PROS OF OTTO
    • 11
      Vagrant-like
    • 4
      Written in golang
    • 3
      Hashicorp built
    CONS OF OTTO
      Be the first to leave a con

      related Otto posts

      RxJS logo

      RxJS

      2.1K
      631
      21
      The Reactive Extensions for JavaScript
      2.1K
      631
      + 1
      21
      PROS OF RXJS
      • 6
        Easier async data chaining and combining
      • 3
        Steep learning curve, but offers predictable operations
      • 2
        Observable subjects
      • 2
        Ability to build your own stream
      • 2
        Works great with any state management implementation
      • 2
        Easier testing
      • 1
        Lot of build-in operators
      • 1
        Simplifies state management
      • 1
        Great for push based architecture
      • 1
        Documentation
      CONS OF RXJS
      • 3
        Steep learning curve

      related RxJS posts

      Eyas Sharaiha
      Software Engineer at Google · | 28 upvotes · 1.1M views
      Shared insights
      on
      TypeScriptTypeScriptAngularAngularRxJSRxJS
      at

      One TypeScript / Angular 2 code health recommendation at Google is how to simplify dealing with RxJS Observables. Two common options in Angular are subscribing to an Observable inside of a Component's TypeScript code, versus using something like the AsyncPipe (foo | async) from the template html. We typically recommend the latter for most straightforward use cases (code without side effects, etc.)

      I typically review a fair amount of Angular code at work. One thing I typically encourage is using plain Observables in an Angular Component, and using AsyncPipe (foo | async) from the template html to handle subscription, rather than directly subscribing to an observable in a component TS file.

      Subscribing in components

      Unless you know a subscription you're starting in a component is very finite (e.g. an HTTP request with no retry logic, etc), subscriptions you make in a Component must:

      1. Be closed, stopped, or cancelled when exiting a component (e.g. when navigating away from a page),
      2. Only be opened (subscribed) when a component is actually loaded/visible (i.e. in ngOnInit rather than in a constructor).

      AsyncPipe can take care of that for you

      Instead of manually implementing component lifecycle hooks, remembering to subscribe and unsubscribe to an Observable, AsyncPipe can do that for you.

      I'm sharing a version of this recommendation with some best practices and code samples.

      #Typescript #Angular #RXJS #Async #Frontend

      See more
      Praveen Mooli
      Engineering Manager at Taylor and Francis · | 19 upvotes · 4M views

      We are in the process of building a modern content platform to deliver our content through various channels. We decided to go with Microservices architecture as we wanted scale. Microservice architecture style is an approach to developing an application as a suite of small independently deployable services built around specific business capabilities. You can gain modularity, extensive parallelism and cost-effective scaling by deploying services across many distributed servers. Microservices modularity facilitates independent updates/deployments, and helps to avoid single point of failure, which can help prevent large-scale outages. We also decided to use Event Driven Architecture pattern which is a popular distributed asynchronous architecture pattern used to produce highly scalable applications. The event-driven architecture is made up of highly decoupled, single-purpose event processing components that asynchronously receive and process events.

      To build our #Backend capabilities we decided to use the following: 1. #Microservices - Java with Spring Boot , Node.js with ExpressJS and Python with Flask 2. #Eventsourcingframework - Amazon Kinesis , Amazon Kinesis Firehose , Amazon SNS , Amazon SQS, AWS Lambda 3. #Data - Amazon RDS , Amazon DynamoDB , Amazon S3 , MongoDB Atlas

      To build #Webapps we decided to use Angular 2 with RxJS

      #Devops - GitHub , Travis CI , Terraform , Docker , Serverless

      See more
      vuex logo

      vuex

      1.5K
      924
      7
      Centralized State Management for Vue.js.
      1.5K
      924
      + 1
      7
      PROS OF VUEX
      • 2
        Debugging
      • 2
        Zero-config time-travel
      • 2
        Centralized State Management
      • 1
        Easy to setup
      CONS OF VUEX
        Be the first to leave a con

        related vuex posts

        Simon Reymann
        Senior Fullstack Developer at QUANTUSflow Software GmbH · | 24 upvotes · 4.9M views

        Our whole Vue.js frontend stack (incl. SSR) consists of the following tools:

        • Nuxt.js consisting of Vue CLI, Vue Router, vuex, Webpack and Sass (Bundler for HTML5, CSS 3), Babel (Transpiler for JavaScript),
        • Vue Styleguidist as our style guide and pool of developed Vue.js components
        • Vuetify as Material Component Framework (for fast app development)
        • TypeScript as programming language
        • Apollo / GraphQL (incl. GraphiQL) for data access layer (https://apollo.vuejs.org/)
        • ESLint, TSLint and Prettier for coding style and code analyzes
        • Jest as testing framework
        • Google Fonts and Font Awesome for typography and icon toolkit
        • NativeScript-Vue for mobile development

        The main reason we have chosen Vue.js over React and AngularJS is related to the following artifacts:

        • Empowered HTML. Vue.js has many similar approaches with Angular. This helps to optimize HTML blocks handling with the use of different components.
        • Detailed documentation. Vue.js has very good documentation which can fasten learning curve for developers.
        • Adaptability. It provides a rapid switching period from other frameworks. It has similarities with Angular and React in terms of design and architecture.
        • Awesome integration. Vue.js can be used for both building single-page applications and more difficult web interfaces of apps. Smaller interactive parts can be easily integrated into the existing infrastructure with no negative effect on the entire system.
        • Large scaling. Vue.js can help to develop pretty large reusable templates.
        • Tiny size. Vue.js weights around 20KB keeping its speed and flexibility. It allows reaching much better performance in comparison to other frameworks.
        See more
        Tim Nolet

        Heroku Docker GitHub Node.js hapi Vue.js AWS Lambda Amazon S3 PostgreSQL Knex.js Checkly is a fairly young company and we're still working hard to find the correct mix of product features, price and audience.

        We are focussed on tech B2B, but I always wanted to serve solo developers too. So I decided to make a $7 plan.

        Why $7? Simply put, it seems to be a sweet spot for tech companies: Heroku, Docker, Github, Appoptics (Librato) all offer $7 plans. They must have done a ton of research into this, so why not piggy back that and try it out.

        Enough biz talk, onto tech. The challenges were:

        • Slice of a portion of the functionality so a $7 plan is still profitable. We call this the "plan limits"
        • Update API and back end services to handle and enforce plan limits.
        • Update the UI to kindly state plan limits are in effect on some part of the UI.
        • Update the pricing page to reflect all changes.
        • Keep the actual processing backend, storage and API's as untouched as possible.

        In essence, we went from strictly volume based pricing to value based pricing. Here come the technical steps & decisions we made to get there.

        1. We updated our PostgreSQL schema so plans now have an array of "features". These are string constants that represent feature toggles.
        2. The Vue.js frontend reads these from the vuex store on login.
        3. Based on these values, the UI has simple v-if statements to either just show the feature or show a friendly "please upgrade" button.
        4. The hapi API has a hook on each relevant API endpoint that checks whether a user's plan has the feature enabled, or not.

        Side note: We offer 10 SMS messages per month on the developer plan. However, we were not actually counting how many people were sending. We had to update our alerting daemon (that runs on Heroku and triggers SMS messages via AWS SNS) to actually bump a counter.

        What we build is basically feature-toggling based on plan features. It is very extensible for future additions. Our scheduling and storage backend that actually runs users' monitoring requests (AWS Lambda) and stores the results (S3 and Postgres) has no knowledge of all of this and remained unchanged.

        Hope this helps anyone building out their SaaS and is in a similar situation.

        See more
        Git logo

        Git

        297.2K
        178.5K
        6.6K
        Fast, scalable, distributed revision control system
        297.2K
        178.5K
        + 1
        6.6K
        PROS OF GIT
        • 1.4K
          Distributed version control system
        • 1.1K
          Efficient branching and merging
        • 959
          Fast
        • 845
          Open source
        • 726
          Better than svn
        • 368
          Great command-line application
        • 306
          Simple
        • 291
          Free
        • 232
          Easy to use
        • 222
          Does not require server
        • 27
          Distributed
        • 22
          Small & Fast
        • 18
          Feature based workflow
        • 15
          Staging Area
        • 13
          Most wide-spread VSC
        • 11
          Role-based codelines
        • 11
          Disposable Experimentation
        • 7
          Frictionless Context Switching
        • 6
          Data Assurance
        • 5
          Efficient
        • 4
          Just awesome
        • 3
          Github integration
        • 3
          Easy branching and merging
        • 2
          Compatible
        • 2
          Flexible
        • 2
          Possible to lose history and commits
        • 1
          Rebase supported natively; reflog; access to plumbing
        • 1
          Light
        • 1
          Team Integration
        • 1
          Fast, scalable, distributed revision control system
        • 1
          Easy
        • 1
          Flexible, easy, Safe, and fast
        • 1
          CLI is great, but the GUI tools are awesome
        • 1
          It's what you do
        • 0
          Phinx
        CONS OF GIT
        • 16
          Hard to learn
        • 11
          Inconsistent command line interface
        • 9
          Easy to lose uncommitted work
        • 8
          Worst documentation ever possibly made
        • 5
          Awful merge handling
        • 3
          Unexistent preventive security flows
        • 3
          Rebase hell
        • 2
          Ironically even die-hard supporters screw up badly
        • 2
          When --force is disabled, cannot rebase
        • 1
          Doesn't scale for big data

        related Git posts

        Simon Reymann
        Senior Fullstack Developer at QUANTUSflow Software GmbH · | 30 upvotes · 11.1M views

        Our whole DevOps stack consists of the following tools:

        • GitHub (incl. GitHub Pages/Markdown for Documentation, GettingStarted and HowTo's) for collaborative review and code management tool
        • Respectively Git as revision control system
        • SourceTree as Git GUI
        • Visual Studio Code as IDE
        • CircleCI for continuous integration (automatize development process)
        • Prettier / TSLint / ESLint as code linter
        • SonarQube as quality gate
        • Docker as container management (incl. Docker Compose for multi-container application management)
        • VirtualBox for operating system simulation tests
        • Kubernetes as cluster management for docker containers
        • Heroku for deploying in test environments
        • nginx as web server (preferably used as facade server in production environment)
        • SSLMate (using OpenSSL) for certificate management
        • Amazon EC2 (incl. Amazon S3) for deploying in stage (production-like) and production environments
        • PostgreSQL as preferred database system
        • Redis as preferred in-memory database/store (great for caching)

        The main reason we have chosen Kubernetes over Docker Swarm is related to the following artifacts:

        • Key features: Easy and flexible installation, Clear dashboard, Great scaling operations, Monitoring is an integral part, Great load balancing concepts, Monitors the condition and ensures compensation in the event of failure.
        • Applications: An application can be deployed using a combination of pods, deployments, and services (or micro-services).
        • Functionality: Kubernetes as a complex installation and setup process, but it not as limited as Docker Swarm.
        • Monitoring: It supports multiple versions of logging and monitoring when the services are deployed within the cluster (Elasticsearch/Kibana (ELK), Heapster/Grafana, Sysdig cloud integration).
        • Scalability: All-in-one framework for distributed systems.
        • Other Benefits: Kubernetes is backed by the Cloud Native Computing Foundation (CNCF), huge community among container orchestration tools, it is an open source and modular tool that works with any OS.
        See more
        Tymoteusz Paul
        Devops guy at X20X Development LTD · | 23 upvotes · 9.7M views

        Often enough I have to explain my way of going about setting up a CI/CD pipeline with multiple deployment platforms. Since I am a bit tired of yapping the same every single time, I've decided to write it up and share with the world this way, and send people to read it instead ;). I will explain it on "live-example" of how the Rome got built, basing that current methodology exists only of readme.md and wishes of good luck (as it usually is ;)).

        It always starts with an app, whatever it may be and reading the readmes available while Vagrant and VirtualBox is installing and updating. Following that is the first hurdle to go over - convert all the instruction/scripts into Ansible playbook(s), and only stopping when doing a clear vagrant up or vagrant reload we will have a fully working environment. As our Vagrant environment is now functional, it's time to break it! This is the moment to look for how things can be done better (too rigid/too lose versioning? Sloppy environment setup?) and replace them with the right way to do stuff, one that won't bite us in the backside. This is the point, and the best opportunity, to upcycle the existing way of doing dev environment to produce a proper, production-grade product.

        I should probably digress here for a moment and explain why. I firmly believe that the way you deploy production is the same way you should deploy develop, shy of few debugging-friendly setting. This way you avoid the discrepancy between how production work vs how development works, which almost always causes major pains in the back of the neck, and with use of proper tools should mean no more work for the developers. That's why we start with Vagrant as developer boxes should be as easy as vagrant up, but the meat of our product lies in Ansible which will do meat of the work and can be applied to almost anything: AWS, bare metal, docker, LXC, in open net, behind vpn - you name it.

        We must also give proper consideration to monitoring and logging hoovering at this point. My generic answer here is to grab Elasticsearch, Kibana, and Logstash. While for different use cases there may be better solutions, this one is well battle-tested, performs reasonably and is very easy to scale both vertically (within some limits) and horizontally. Logstash rules are easy to write and are well supported in maintenance through Ansible, which as I've mentioned earlier, are at the very core of things, and creating triggers/reports and alerts based on Elastic and Kibana is generally a breeze, including some quite complex aggregations.

        If we are happy with the state of the Ansible it's time to move on and put all those roles and playbooks to work. Namely, we need something to manage our CI/CD pipelines. For me, the choice is obvious: TeamCity. It's modern, robust and unlike most of the light-weight alternatives, it's transparent. What I mean by that is that it doesn't tell you how to do things, doesn't limit your ways to deploy, or test, or package for that matter. Instead, it provides a developer-friendly and rich playground for your pipelines. You can do most the same with Jenkins, but it has a quite dated look and feel to it, while also missing some key functionality that must be brought in via plugins (like quality REST API which comes built-in with TeamCity). It also comes with all the common-handy plugins like Slack or Apache Maven integration.

        The exact flow between CI and CD varies too greatly from one application to another to describe, so I will outline a few rules that guide me in it: 1. Make build steps as small as possible. This way when something breaks, we know exactly where, without needing to dig and root around. 2. All security credentials besides development environment must be sources from individual Vault instances. Keys to those containers should exist only on the CI/CD box and accessible by a few people (the less the better). This is pretty self-explanatory, as anything besides dev may contain sensitive data and, at times, be public-facing. Because of that appropriate security must be present. TeamCity shines in this department with excellent secrets-management. 3. Every part of the build chain shall consume and produce artifacts. If it creates nothing, it likely shouldn't be its own build. This way if any issue shows up with any environment or version, all developer has to do it is grab appropriate artifacts to reproduce the issue locally. 4. Deployment builds should be directly tied to specific Git branches/tags. This enables much easier tracking of what caused an issue, including automated identifying and tagging the author (nothing like automated regression testing!).

        Speaking of deployments, I generally try to keep it simple but also with a close eye on the wallet. Because of that, I am more than happy with AWS or another cloud provider, but also constantly peeking at the loads and do we get the value of what we are paying for. Often enough the pattern of use is not constantly erratic, but rather has a firm baseline which could be migrated away from the cloud and into bare metal boxes. That is another part where this approach strongly triumphs over the common Docker and CircleCI setup, where you are very much tied in to use cloud providers and getting out is expensive. Here to embrace bare-metal hosting all you need is a help of some container-based self-hosting software, my personal preference is with Proxmox and LXC. Following that all you must write are ansible scripts to manage hardware of Proxmox, similar way as you do for Amazon EC2 (ansible supports both greatly) and you are good to go. One does not exclude another, quite the opposite, as they can live in great synergy and cut your costs dramatically (the heavier your base load, the bigger the savings) while providing production-grade resiliency.

        See more
        GitHub logo

        GitHub

        285.5K
        249.4K
        10.3K
        Powerful collaboration, review, and code management for open source and private development projects
        285.5K
        249.4K
        + 1
        10.3K
        PROS OF GITHUB
        • 1.8K
          Open source friendly
        • 1.5K
          Easy source control
        • 1.3K
          Nice UI
        • 1.1K
          Great for team collaboration
        • 867
          Easy setup
        • 504
          Issue tracker
        • 487
          Great community
        • 483
          Remote team collaboration
        • 449
          Great way to share
        • 442
          Pull request and features planning
        • 147
          Just works
        • 132
          Integrated in many tools
        • 122
          Free Public Repos
        • 116
          Github Gists
        • 113
          Github pages
        • 83
          Easy to find repos
        • 62
          Open source
        • 60
          Easy to find projects
        • 60
          It's free
        • 56
          Network effect
        • 49
          Extensive API
        • 43
          Organizations
        • 42
          Branching
        • 34
          Developer Profiles
        • 32
          Git Powered Wikis
        • 30
          Great for collaboration
        • 24
          It's fun
        • 23
          Clean interface and good integrations
        • 22
          Community SDK involvement
        • 20
          Learn from others source code
        • 16
          Because: Git
        • 14
          It integrates directly with Azure
        • 10
          Standard in Open Source collab
        • 10
          Newsfeed
        • 8
          Fast
        • 8
          Beautiful user experience
        • 8
          It integrates directly with Hipchat
        • 7
          Easy to discover new code libraries
        • 6
          Smooth integration
        • 6
          Integrations
        • 6
          Graphs
        • 6
          Nice API
        • 6
          It's awesome
        • 6
          Cloud SCM
        • 5
          Quick Onboarding
        • 5
          Remarkable uptime
        • 5
          CI Integration
        • 5
          Reliable
        • 5
          Hands down best online Git service available
        • 4
          Version Control
        • 4
          Unlimited Public Repos at no cost
        • 4
          Simple but powerful
        • 4
          Loved by developers
        • 4
          Free HTML hosting
        • 4
          Uses GIT
        • 4
          Security options
        • 4
          Easy to use and collaborate with others
        • 3
          Easy deployment via SSH
        • 3
          Ci
        • 3
          IAM
        • 3
          Nice to use
        • 2
          Easy and efficient maintainance of the projects
        • 2
          Beautiful
        • 2
          Self Hosted
        • 2
          Issues tracker
        • 2
          Easy source control and everything is backed up
        • 2
          Never dethroned
        • 2
          All in one development service
        • 2
          Good tools support
        • 2
          Free HTML hostings
        • 2
          IAM integration
        • 2
          Very Easy to Use
        • 2
          Easy to use
        • 2
          Leads the copycats
        • 2
          Free private repos
        • 1
          Profound
        • 1
          Dasf
        CONS OF GITHUB
        • 55
          Owned by micrcosoft
        • 38
          Expensive for lone developers that want private repos
        • 15
          Relatively slow product/feature release cadence
        • 10
          API scoping could be better
        • 9
          Only 3 collaborators for private repos
        • 4
          Limited featureset for issue management
        • 3
          Does not have a graph for showing history like git lens
        • 2
          GitHub Packages does not support SNAPSHOT versions
        • 1
          No multilingual interface
        • 1
          Takes a long time to commit
        • 1
          Expensive

        related GitHub posts

        Johnny Bell

        I was building a personal project that I needed to store items in a real time database. I am more comfortable with my Frontend skills than my backend so I didn't want to spend time building out anything in Ruby or Go.

        I stumbled on Firebase by #Google, and it was really all I needed. It had realtime data, an area for storing file uploads and best of all for the amount of data I needed it was free!

        I built out my application using tools I was familiar with, React for the framework, Redux.js to manage my state across components, and styled-components for the styling.

        Now as this was a project I was just working on in my free time for fun I didn't really want to pay for hosting. I did some research and I found Netlify. I had actually seen them at #ReactRally the year before and deployed a Gatsby site to Netlify already.

        Netlify was very easy to setup and link to my GitHub account you select a repo and pretty much with very little configuration you have a live site that will deploy every time you push to master.

        With the selection of these tools I was able to build out my application, connect it to a realtime database, and deploy to a live environment all with $0 spent.

        If you're looking to build out a small app I suggest giving these tools a go as you can get your idea out into the real world for absolutely no cost.

        See more

        Context: I wanted to create an end to end IoT data pipeline simulation in Google Cloud IoT Core and other GCP services. I never touched Terraform meaningfully until working on this project, and it's one of the best explorations in my development career. The documentation and syntax is incredibly human-readable and friendly. I'm used to building infrastructure through the google apis via Python , but I'm so glad past Sung did not make that decision. I was tempted to use Google Cloud Deployment Manager, but the templates were a bit convoluted by first impression. I'm glad past Sung did not make this decision either.

        Solution: Leveraging Google Cloud Build Google Cloud Run Google Cloud Bigtable Google BigQuery Google Cloud Storage Google Compute Engine along with some other fun tools, I can deploy over 40 GCP resources using Terraform!

        Check Out My Architecture: CLICK ME

        Check out the GitHub repo attached

        See more
        Visual Studio Code logo

        Visual Studio Code

        179.2K
        163.4K
        2.3K
        Build and debug modern web and cloud applications, by Microsoft
        179.2K
        163.4K
        + 1
        2.3K
        PROS OF VISUAL STUDIO CODE
        • 340
          Powerful multilanguage IDE
        • 308
          Fast
        • 193
          Front-end develop out of the box
        • 158
          Support TypeScript IntelliSense
        • 142
          Very basic but free
        • 126
          Git integration
        • 106
          Intellisense
        • 78
          Faster than Atom
        • 53
          Better ui, easy plugins, and nice git integration
        • 45
          Great Refactoring Tools
        • 44
          Good Plugins
        • 42
          Terminal
        • 38
          Superb markdown support
        • 36
          Open Source
        • 35
          Extensions
        • 26
          Awesome UI
        • 26
          Large & up-to-date extension community
        • 24
          Powerful and fast
        • 22
          Portable
        • 18
          Best code editor
        • 18
          Best editor
        • 17
          Easy to get started with
        • 15
          Lots of extensions
        • 15
          Good for begginers
        • 15
          Crossplatform
        • 15
          Built on Electron
        • 14
          Extensions for everything
        • 14
          Open, cross-platform, fast, monthly updates
        • 14
          All Languages Support
        • 13
          Easy to use and learn
        • 12
          "fast, stable & easy to use"
        • 12
          Extensible
        • 11
          Ui design is great
        • 11
          Totally customizable
        • 11
          Git out of the box
        • 11
          Useful for begginer
        • 11
          Faster edit for slow computer
        • 10
          SSH support
        • 10
          Great community
        • 10
          Fast Startup
        • 9
          Works With Almost EveryThing You Need
        • 9
          Great language support
        • 9
          Powerful Debugger
        • 9
          It has terminal and there are lots of shortcuts in it
        • 8
          Can compile and run .py files
        • 8
          Python extension is fast
        • 7
          Features rich
        • 7
          Great document formater
        • 6
          He is not Michael
        • 6
          Extension Echosystem
        • 6
          She is not Rachel
        • 6
          Awesome multi cursor support
        • 5
          VSCode.pro Course makes it easy to learn
        • 5
          Language server client
        • 5
          SFTP Workspace
        • 5
          Very proffesional
        • 5
          Easy azure
        • 4
          Has better support and more extentions for debugging
        • 4
          Supports lots of operating systems
        • 4
          Excellent as git difftool and mergetool
        • 4
          Virtualenv integration
        • 3
          Better autocompletes than Atom
        • 3
          Has more than enough languages for any developer
        • 3
          'batteries included'
        • 3
          More tools to integrate with vs
        • 3
          Emmet preinstalled
        • 2
          VS Code Server: Browser version of VS Code
        • 2
          CMake support with autocomplete
        • 2
          Microsoft
        • 2
          Customizable
        • 2
          Light
        • 2
          Big extension marketplace
        • 2
          Fast and ruby is built right in
        • 1
          File:///C:/Users/ydemi/Downloads/yuksel_demirkaya_webpa
        CONS OF VISUAL STUDIO CODE
        • 46
          Slow startup
        • 29
          Resource hog at times
        • 20
          Poor refactoring
        • 13
          Poor UI Designer
        • 11
          Weak Ui design tools
        • 10
          Poor autocomplete
        • 8
          Super Slow
        • 8
          Huge cpu usage with few installed extension
        • 8
          Microsoft sends telemetry data
        • 7
          Poor in PHP
        • 6
          It's MicroSoft
        • 3
          Poor in Python
        • 3
          No Built in Browser Preview
        • 3
          No color Intergrator
        • 3
          Very basic for java development and buggy at times
        • 3
          No built in live Preview
        • 3
          Electron
        • 2
          Bad Plugin Architecture
        • 2
          Powered by Electron
        • 1
          Terminal does not identify path vars sometimes
        • 1
          Slow C++ Language Server

        related Visual Studio Code posts

        Yshay Yaacobi

        Our first experience with .NET core was when we developed our OSS feature management platform - Tweek (https://github.com/soluto/tweek). We wanted to create a solution that is able to run anywhere (super important for OSS), has excellent performance characteristics and can fit in a multi-container architecture. We decided to implement our rule engine processor in F# , our main service was implemented in C# and other components were built using JavaScript / TypeScript and Go.

        Visual Studio Code worked really well for us as well, it worked well with all our polyglot services and the .Net core integration had great cross-platform developer experience (to be fair, F# was a bit trickier) - actually, each of our team members used a different OS (Ubuntu, macos, windows). Our production deployment ran for a time on Docker Swarm until we've decided to adopt Kubernetes with almost seamless migration process.

        After our positive experience of running .Net core workloads in containers and developing Tweek's .Net services on non-windows machines, C# had gained back some of its popularity (originally lost to Node.js), and other teams have been using it for developing microservices, k8s sidecars (like https://github.com/Soluto/airbag), cli tools, serverless functions and other projects...

        See more
        Simon Reymann
        Senior Fullstack Developer at QUANTUSflow Software GmbH · | 30 upvotes · 11.1M views

        Our whole DevOps stack consists of the following tools:

        • GitHub (incl. GitHub Pages/Markdown for Documentation, GettingStarted and HowTo's) for collaborative review and code management tool
        • Respectively Git as revision control system
        • SourceTree as Git GUI
        • Visual Studio Code as IDE
        • CircleCI for continuous integration (automatize development process)
        • Prettier / TSLint / ESLint as code linter
        • SonarQube as quality gate
        • Docker as container management (incl. Docker Compose for multi-container application management)
        • VirtualBox for operating system simulation tests
        • Kubernetes as cluster management for docker containers
        • Heroku for deploying in test environments
        • nginx as web server (preferably used as facade server in production environment)
        • SSLMate (using OpenSSL) for certificate management
        • Amazon EC2 (incl. Amazon S3) for deploying in stage (production-like) and production environments
        • PostgreSQL as preferred database system
        • Redis as preferred in-memory database/store (great for caching)

        The main reason we have chosen Kubernetes over Docker Swarm is related to the following artifacts:

        • Key features: Easy and flexible installation, Clear dashboard, Great scaling operations, Monitoring is an integral part, Great load balancing concepts, Monitors the condition and ensures compensation in the event of failure.
        • Applications: An application can be deployed using a combination of pods, deployments, and services (or micro-services).
        • Functionality: Kubernetes as a complex installation and setup process, but it not as limited as Docker Swarm.
        • Monitoring: It supports multiple versions of logging and monitoring when the services are deployed within the cluster (Elasticsearch/Kibana (ELK), Heapster/Grafana, Sysdig cloud integration).
        • Scalability: All-in-one framework for distributed systems.
        • Other Benefits: Kubernetes is backed by the Cloud Native Computing Foundation (CNCF), huge community among container orchestration tools, it is an open source and modular tool that works with any OS.
        See more
        Docker logo

        Docker

        174.3K
        140.1K
        3.9K
        Enterprise Container Platform for High-Velocity Innovation.
        174.3K
        140.1K
        + 1
        3.9K
        PROS OF DOCKER
        • 823
          Rapid integration and build up
        • 692
          Isolation
        • 521
          Open source
        • 505
          Testa­bil­i­ty and re­pro­ducibil­i­ty
        • 460
          Lightweight
        • 218
          Standardization
        • 185
          Scalable
        • 106
          Upgrading / down­grad­ing / ap­pli­ca­tion versions
        • 88
          Security
        • 85
          Private paas environments
        • 34
          Portability
        • 26
          Limit resource usage
        • 17
          Game changer
        • 16
          I love the way docker has changed virtualization
        • 14
          Fast
        • 12
          Concurrency
        • 8
          Docker's Compose tools
        • 6
          Fast and Portable
        • 6
          Easy setup
        • 5
          Because its fun
        • 4
          Makes shipping to production very simple
        • 3
          It's dope
        • 3
          Highly useful
        • 2
          Does a nice job hogging memory
        • 2
          Open source and highly configurable
        • 2
          Simplicity, isolation, resource effective
        • 2
          MacOS support FAKE
        • 2
          Its cool
        • 2
          Docker hub for the FTW
        • 2
          HIgh Throughput
        • 2
          Very easy to setup integrate and build
        • 2
          Package the environment with the application
        • 2
          Super
        • 0
          Asdfd
        CONS OF DOCKER
        • 8
          New versions == broken features
        • 6
          Unreliable networking
        • 6
          Documentation not always in sync
        • 4
          Moves quickly
        • 3
          Not Secure

        related Docker posts

        Simon Reymann
        Senior Fullstack Developer at QUANTUSflow Software GmbH · | 30 upvotes · 11.1M views

        Our whole DevOps stack consists of the following tools:

        • GitHub (incl. GitHub Pages/Markdown for Documentation, GettingStarted and HowTo's) for collaborative review and code management tool
        • Respectively Git as revision control system
        • SourceTree as Git GUI
        • Visual Studio Code as IDE
        • CircleCI for continuous integration (automatize development process)
        • Prettier / TSLint / ESLint as code linter
        • SonarQube as quality gate
        • Docker as container management (incl. Docker Compose for multi-container application management)
        • VirtualBox for operating system simulation tests
        • Kubernetes as cluster management for docker containers
        • Heroku for deploying in test environments
        • nginx as web server (preferably used as facade server in production environment)
        • SSLMate (using OpenSSL) for certificate management
        • Amazon EC2 (incl. Amazon S3) for deploying in stage (production-like) and production environments
        • PostgreSQL as preferred database system
        • Redis as preferred in-memory database/store (great for caching)

        The main reason we have chosen Kubernetes over Docker Swarm is related to the following artifacts:

        • Key features: Easy and flexible installation, Clear dashboard, Great scaling operations, Monitoring is an integral part, Great load balancing concepts, Monitors the condition and ensures compensation in the event of failure.
        • Applications: An application can be deployed using a combination of pods, deployments, and services (or micro-services).
        • Functionality: Kubernetes as a complex installation and setup process, but it not as limited as Docker Swarm.
        • Monitoring: It supports multiple versions of logging and monitoring when the services are deployed within the cluster (Elasticsearch/Kibana (ELK), Heapster/Grafana, Sysdig cloud integration).
        • Scalability: All-in-one framework for distributed systems.
        • Other Benefits: Kubernetes is backed by the Cloud Native Computing Foundation (CNCF), huge community among container orchestration tools, it is an open source and modular tool that works with any OS.
        See more
        Tymoteusz Paul
        Devops guy at X20X Development LTD · | 23 upvotes · 9.7M views

        Often enough I have to explain my way of going about setting up a CI/CD pipeline with multiple deployment platforms. Since I am a bit tired of yapping the same every single time, I've decided to write it up and share with the world this way, and send people to read it instead ;). I will explain it on "live-example" of how the Rome got built, basing that current methodology exists only of readme.md and wishes of good luck (as it usually is ;)).

        It always starts with an app, whatever it may be and reading the readmes available while Vagrant and VirtualBox is installing and updating. Following that is the first hurdle to go over - convert all the instruction/scripts into Ansible playbook(s), and only stopping when doing a clear vagrant up or vagrant reload we will have a fully working environment. As our Vagrant environment is now functional, it's time to break it! This is the moment to look for how things can be done better (too rigid/too lose versioning? Sloppy environment setup?) and replace them with the right way to do stuff, one that won't bite us in the backside. This is the point, and the best opportunity, to upcycle the existing way of doing dev environment to produce a proper, production-grade product.

        I should probably digress here for a moment and explain why. I firmly believe that the way you deploy production is the same way you should deploy develop, shy of few debugging-friendly setting. This way you avoid the discrepancy between how production work vs how development works, which almost always causes major pains in the back of the neck, and with use of proper tools should mean no more work for the developers. That's why we start with Vagrant as developer boxes should be as easy as vagrant up, but the meat of our product lies in Ansible which will do meat of the work and can be applied to almost anything: AWS, bare metal, docker, LXC, in open net, behind vpn - you name it.

        We must also give proper consideration to monitoring and logging hoovering at this point. My generic answer here is to grab Elasticsearch, Kibana, and Logstash. While for different use cases there may be better solutions, this one is well battle-tested, performs reasonably and is very easy to scale both vertically (within some limits) and horizontally. Logstash rules are easy to write and are well supported in maintenance through Ansible, which as I've mentioned earlier, are at the very core of things, and creating triggers/reports and alerts based on Elastic and Kibana is generally a breeze, including some quite complex aggregations.

        If we are happy with the state of the Ansible it's time to move on and put all those roles and playbooks to work. Namely, we need something to manage our CI/CD pipelines. For me, the choice is obvious: TeamCity. It's modern, robust and unlike most of the light-weight alternatives, it's transparent. What I mean by that is that it doesn't tell you how to do things, doesn't limit your ways to deploy, or test, or package for that matter. Instead, it provides a developer-friendly and rich playground for your pipelines. You can do most the same with Jenkins, but it has a quite dated look and feel to it, while also missing some key functionality that must be brought in via plugins (like quality REST API which comes built-in with TeamCity). It also comes with all the common-handy plugins like Slack or Apache Maven integration.

        The exact flow between CI and CD varies too greatly from one application to another to describe, so I will outline a few rules that guide me in it: 1. Make build steps as small as possible. This way when something breaks, we know exactly where, without needing to dig and root around. 2. All security credentials besides development environment must be sources from individual Vault instances. Keys to those containers should exist only on the CI/CD box and accessible by a few people (the less the better). This is pretty self-explanatory, as anything besides dev may contain sensitive data and, at times, be public-facing. Because of that appropriate security must be present. TeamCity shines in this department with excellent secrets-management. 3. Every part of the build chain shall consume and produce artifacts. If it creates nothing, it likely shouldn't be its own build. This way if any issue shows up with any environment or version, all developer has to do it is grab appropriate artifacts to reproduce the issue locally. 4. Deployment builds should be directly tied to specific Git branches/tags. This enables much easier tracking of what caused an issue, including automated identifying and tagging the author (nothing like automated regression testing!).

        Speaking of deployments, I generally try to keep it simple but also with a close eye on the wallet. Because of that, I am more than happy with AWS or another cloud provider, but also constantly peeking at the loads and do we get the value of what we are paying for. Often enough the pattern of use is not constantly erratic, but rather has a firm baseline which could be migrated away from the cloud and into bare metal boxes. That is another part where this approach strongly triumphs over the common Docker and CircleCI setup, where you are very much tied in to use cloud providers and getting out is expensive. Here to embrace bare-metal hosting all you need is a help of some container-based self-hosting software, my personal preference is with Proxmox and LXC. Following that all you must write are ansible scripts to manage hardware of Proxmox, similar way as you do for Amazon EC2 (ansible supports both greatly) and you are good to go. One does not exclude another, quite the opposite, as they can live in great synergy and cut your costs dramatically (the heavier your base load, the bigger the savings) while providing production-grade resiliency.

        See more