Alternatives to MXNet logo

Alternatives to MXNet

TensorFlow, PyTorch, Keras, Theano, and Gluon are the most popular alternatives and competitors to MXNet.
47
2

What is MXNet and what are its top alternatives?

A deep learning framework designed for both efficiency and flexibility. It allows you to mix symbolic and imperative programming to maximize efficiency and productivity. At its core, it contains a dynamic dependency scheduler that automatically parallelizes both symbolic and imperative operations on the fly.
MXNet is a tool in the Machine Learning Tools category of a tech stack.
MXNet is an open source tool with GitHub stars and GitHub forks. Here’s a link to MXNet's open source repository on GitHub

Top Alternatives to MXNet

  • TensorFlow
    TensorFlow

    TensorFlow is an open source software library for numerical computation using data flow graphs. Nodes in the graph represent mathematical operations, while the graph edges represent the multidimensional data arrays (tensors) communicated between them. The flexible architecture allows you to deploy computation to one or more CPUs or GPUs in a desktop, server, or mobile device with a single API. ...

  • PyTorch
    PyTorch

    PyTorch is not a Python binding into a monolothic C++ framework. It is built to be deeply integrated into Python. You can use it naturally like you would use numpy / scipy / scikit-learn etc. ...

  • Keras
    Keras

    Deep Learning library for Python. Convnets, recurrent neural networks, and more. Runs on TensorFlow or Theano. https://keras.io/ ...

  • Theano
    Theano

    Theano is a Python library that lets you to define, optimize, and evaluate mathematical expressions, especially ones with multi-dimensional arrays (numpy.ndarray). ...

  • Gluon
    Gluon

    A new open source deep learning interface which allows developers to more easily and quickly build machine learning models, without compromising performance. Gluon provides a clear, concise API for defining machine learning models using a collection of pre-built, optimized neural network components. ...

  • NumPy
    NumPy

    Besides its obvious scientific uses, NumPy can also be used as an efficient multi-dimensional container of generic data. Arbitrary data-types can be defined. This allows NumPy to seamlessly and speedily integrate with a wide variety of databases. ...

  • Flux
    Flux

    Flux is the application architecture that Facebook uses for building client-side web applications. It complements React's composable view components by utilizing a unidirectional data flow. It's more of a pattern rather than a formal framework, and you can start using Flux immediately without a lot of new code. ...

  • Postman
    Postman

    It is the only complete API development environment, used by nearly five million developers and more than 100,000 companies worldwide. ...

MXNet alternatives & related posts

TensorFlow logo

TensorFlow

3.8K
3.5K
106
Open Source Software Library for Machine Intelligence
3.8K
3.5K
+ 1
106
PROS OF TENSORFLOW
  • 32
    High Performance
  • 19
    Connect Research and Production
  • 16
    Deep Flexibility
  • 12
    Auto-Differentiation
  • 11
    True Portability
  • 6
    Easy to use
  • 5
    High level abstraction
  • 5
    Powerful
CONS OF TENSORFLOW
  • 9
    Hard
  • 6
    Hard to debug
  • 2
    Documentation not very helpful

related TensorFlow posts

Tom Klein

Google Analytics is a great tool to analyze your traffic. To debug our software and ask questions, we love to use Postman and Stack Overflow. Google Drive helps our team to share documents. We're able to build our great products through the APIs by Google Maps, CloudFlare, Stripe, PayPal, Twilio, Let's Encrypt, and TensorFlow.

See more
Conor Myhrvold
Tech Brand Mgr, Office of CTO at Uber · | 8 upvotes · 2.8M views

Why we built an open source, distributed training framework for TensorFlow , Keras , and PyTorch:

At Uber, we apply deep learning across our business; from self-driving research to trip forecasting and fraud prevention, deep learning enables our engineers and data scientists to create better experiences for our users.

TensorFlow has become a preferred deep learning library at Uber for a variety of reasons. To start, the framework is one of the most widely used open source frameworks for deep learning, which makes it easy to onboard new users. It also combines high performance with an ability to tinker with low-level model details—for instance, we can use both high-level APIs, such as Keras, and implement our own custom operators using NVIDIA’s CUDA toolkit.

Uber has introduced Michelangelo (https://eng.uber.com/michelangelo/), an internal ML-as-a-service platform that democratizes machine learning and makes it easy to build and deploy these systems at scale. In this article, we pull back the curtain on Horovod, an open source component of Michelangelo’s deep learning toolkit which makes it easier to start—and speed up—distributed deep learning projects with TensorFlow:

https://eng.uber.com/horovod/

(Direct GitHub repo: https://github.com/uber/horovod)

See more
PyTorch logo

PyTorch

1.5K
1.5K
43
A deep learning framework that puts Python first
1.5K
1.5K
+ 1
43
PROS OF PYTORCH
  • 15
    Easy to use
  • 11
    Developer Friendly
  • 10
    Easy to debug
  • 7
    Sometimes faster than TensorFlow
CONS OF PYTORCH
  • 3
    Lots of code
  • 1
    It eats poop

related PyTorch posts

Server side

We decided to use Python for our backend because it is one of the industry standard languages for data analysis and machine learning. It also has a lot of support due to its large user base.

  • Web Server: We chose Flask because we want to keep our machine learning / data analysis and the web server in the same language. Flask is easy to use and we all have experience with it. Postman will be used for creating and testing APIs due to its convenience.

  • Machine Learning: We decided to go with PyTorch for machine learning since it is one of the most popular libraries. It is also known to have an easier learning curve than other popular libraries such as Tensorflow. This is important because our team lacks ML experience and learning the tool as fast as possible would increase productivity.

  • Data Analysis: Some common Python libraries will be used to analyze our data. These include NumPy, Pandas , and matplotlib. These tools combined will help us learn the properties and characteristics of our data. Jupyter notebook will be used to help organize the data analysis process, and improve the code readability.

Client side

  • UI: We decided to use React for the UI because it helps organize the data and variables of the application into components, making it very convenient to maintain our dashboard. Since React is one of the most popular front end frameworks right now, there will be a lot of support for it as well as a lot of potential new hires that are familiar with the framework. CSS 3 and HTML5 will be used for the basic styling and structure of the web app, as they are the most widely used front end languages.

  • State Management: We decided to use Redux to manage the state of the application since it works naturally to React. Our team also already has experience working with Redux which gave it a slight edge over the other state management libraries.

  • Data Visualization: We decided to use the React-based library Victory to visualize the data. They have very user friendly documentation on their official website which we find easy to learn from.

Cache

  • Caching: We decided between Redis and memcached because they are two of the most popular open-source cache engines. We ultimately decided to use Redis to improve our web app performance mainly due to the extra functionalities it provides such as fine-tuning cache contents and durability.

Database

  • Database: We decided to use a NoSQL database over a relational database because of its flexibility from not having a predefined schema. The user behavior analytics has to be flexible since the data we plan to store may change frequently. We decided on MongoDB because it is lightweight and we can easily host the database with MongoDB Atlas . Everyone on our team also has experience working with MongoDB.

Infrastructure

  • Deployment: We decided to use Heroku over AWS, Azure, Google Cloud because it is free. Although there are advantages to the other cloud services, Heroku makes the most sense to our team because our primary goal is to build an MVP.

Other Tools

  • Communication Slack will be used as the primary source of communication. It provides all the features needed for basic discussions. In terms of more interactive meetings, Zoom will be used for its video calls and screen sharing capabilities.

  • Source Control The project will be stored on GitHub and all code changes will be done though pull requests. This will help us keep the codebase clean and make it easy to revert changes when we need to.

See more
Conor Myhrvold
Tech Brand Mgr, Office of CTO at Uber · | 8 upvotes · 2.8M views

Why we built an open source, distributed training framework for TensorFlow , Keras , and PyTorch:

At Uber, we apply deep learning across our business; from self-driving research to trip forecasting and fraud prevention, deep learning enables our engineers and data scientists to create better experiences for our users.

TensorFlow has become a preferred deep learning library at Uber for a variety of reasons. To start, the framework is one of the most widely used open source frameworks for deep learning, which makes it easy to onboard new users. It also combines high performance with an ability to tinker with low-level model details—for instance, we can use both high-level APIs, such as Keras, and implement our own custom operators using NVIDIA’s CUDA toolkit.

Uber has introduced Michelangelo (https://eng.uber.com/michelangelo/), an internal ML-as-a-service platform that democratizes machine learning and makes it easy to build and deploy these systems at scale. In this article, we pull back the curtain on Horovod, an open source component of Michelangelo’s deep learning toolkit which makes it easier to start—and speed up—distributed deep learning projects with TensorFlow:

https://eng.uber.com/horovod/

(Direct GitHub repo: https://github.com/uber/horovod)

See more
Keras logo

Keras

1.1K
1.1K
22
Deep Learning library for Theano and TensorFlow
1.1K
1.1K
+ 1
22
PROS OF KERAS
  • 8
    Quality Documentation
  • 7
    Supports Tensorflow and Theano backends
  • 7
    Easy and fast NN prototyping
CONS OF KERAS
  • 4
    Hard to debug

related Keras posts

Conor Myhrvold
Tech Brand Mgr, Office of CTO at Uber · | 8 upvotes · 2.8M views

Why we built an open source, distributed training framework for TensorFlow , Keras , and PyTorch:

At Uber, we apply deep learning across our business; from self-driving research to trip forecasting and fraud prevention, deep learning enables our engineers and data scientists to create better experiences for our users.

TensorFlow has become a preferred deep learning library at Uber for a variety of reasons. To start, the framework is one of the most widely used open source frameworks for deep learning, which makes it easy to onboard new users. It also combines high performance with an ability to tinker with low-level model details—for instance, we can use both high-level APIs, such as Keras, and implement our own custom operators using NVIDIA’s CUDA toolkit.

Uber has introduced Michelangelo (https://eng.uber.com/michelangelo/), an internal ML-as-a-service platform that democratizes machine learning and makes it easy to build and deploy these systems at scale. In this article, we pull back the curtain on Horovod, an open source component of Michelangelo’s deep learning toolkit which makes it easier to start—and speed up—distributed deep learning projects with TensorFlow:

https://eng.uber.com/horovod/

(Direct GitHub repo: https://github.com/uber/horovod)

See more

I am going to send my website to a Venture Capitalist for inspection. If I succeed, I will get funding for my StartUp! This website is based on Django and Uses Keras and TensorFlow model to predict medical imaging. Should I use Heroku or PythonAnywhere to deploy my website ?? Best Regards, Adarsh.

See more
Theano logo

Theano

32
65
0
Define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficiently
32
65
+ 1
0
PROS OF THEANO
    Be the first to leave a pro
    CONS OF THEANO
      Be the first to leave a con

      related Theano posts

      Gluon logo

      Gluon

      29
      79
      3
      Deep Learning API from AWS and Microsoft
      29
      79
      + 1
      3
      PROS OF GLUON
      • 3
        Good learning materials
      CONS OF GLUON
        Be the first to leave a con

        related Gluon posts

        NumPy logo

        NumPy

        3K
        788
        14
        Fundamental package for scientific computing with Python
        3K
        788
        + 1
        14
        PROS OF NUMPY
        • 10
          Great for data analysis
        • 4
          Faster than list
        CONS OF NUMPY
          Be the first to leave a con

          related NumPy posts

          Server side

          We decided to use Python for our backend because it is one of the industry standard languages for data analysis and machine learning. It also has a lot of support due to its large user base.

          • Web Server: We chose Flask because we want to keep our machine learning / data analysis and the web server in the same language. Flask is easy to use and we all have experience with it. Postman will be used for creating and testing APIs due to its convenience.

          • Machine Learning: We decided to go with PyTorch for machine learning since it is one of the most popular libraries. It is also known to have an easier learning curve than other popular libraries such as Tensorflow. This is important because our team lacks ML experience and learning the tool as fast as possible would increase productivity.

          • Data Analysis: Some common Python libraries will be used to analyze our data. These include NumPy, Pandas , and matplotlib. These tools combined will help us learn the properties and characteristics of our data. Jupyter notebook will be used to help organize the data analysis process, and improve the code readability.

          Client side

          • UI: We decided to use React for the UI because it helps organize the data and variables of the application into components, making it very convenient to maintain our dashboard. Since React is one of the most popular front end frameworks right now, there will be a lot of support for it as well as a lot of potential new hires that are familiar with the framework. CSS 3 and HTML5 will be used for the basic styling and structure of the web app, as they are the most widely used front end languages.

          • State Management: We decided to use Redux to manage the state of the application since it works naturally to React. Our team also already has experience working with Redux which gave it a slight edge over the other state management libraries.

          • Data Visualization: We decided to use the React-based library Victory to visualize the data. They have very user friendly documentation on their official website which we find easy to learn from.

          Cache

          • Caching: We decided between Redis and memcached because they are two of the most popular open-source cache engines. We ultimately decided to use Redis to improve our web app performance mainly due to the extra functionalities it provides such as fine-tuning cache contents and durability.

          Database

          • Database: We decided to use a NoSQL database over a relational database because of its flexibility from not having a predefined schema. The user behavior analytics has to be flexible since the data we plan to store may change frequently. We decided on MongoDB because it is lightweight and we can easily host the database with MongoDB Atlas . Everyone on our team also has experience working with MongoDB.

          Infrastructure

          • Deployment: We decided to use Heroku over AWS, Azure, Google Cloud because it is free. Although there are advantages to the other cloud services, Heroku makes the most sense to our team because our primary goal is to build an MVP.

          Other Tools

          • Communication Slack will be used as the primary source of communication. It provides all the features needed for basic discussions. In terms of more interactive meetings, Zoom will be used for its video calls and screen sharing capabilities.

          • Source Control The project will be stored on GitHub and all code changes will be done though pull requests. This will help us keep the codebase clean and make it easy to revert changes when we need to.

          See more

          Should I continue learning Django or take this Spring opportunity? I have been coding in python for about 2 years. I am currently learning Django and I am enjoying it. I also have some knowledge of data science libraries (Pandas, NumPy, scikit-learn, PyTorch). I am currently enhancing my web development and software engineering skills and may shift later into data science since I came from a medical background. The issue is that I am offered now a very trustworthy 9 months program teaching Java/Spring. The graduates of this program work directly in well know tech companies. Although I have been planning to continue with my Python, the other opportunity makes me hesitant since it will put me to work in a specific roadmap with deadlines and mentors. I also found on glassdoor that Spring jobs are way more than Django. Should I apply for this program or continue my journey?

          See more
          Flux logo

          Flux

          519
          511
          130
          Application Architecture for Building User Interfaces
          519
          511
          + 1
          130
          PROS OF FLUX
          • 44
            Unidirectional data flow
          • 32
            Architecture
          • 19
            Structure and Data Flow
          • 14
            Not MVC
          • 12
            Open source
          • 6
            Created by facebook
          • 3
            A gestalt shift
          CONS OF FLUX
            Be the first to leave a con

            related Flux posts

            Marcos Iglesias
            Sr. Software Engineer at Eventbrite · | 13 upvotes · 224.4K views

            We are in the middle of a change of the stack on the front end. So we used Backbone.js with Marionette. Then we also created our own implementation of a Flux kind of flow. We call it eb-flux. We have worked with Marionette for a long time. Then at some point we start evolving and end up having a kind of Redux.js-style architecture, but with Marionette.

            But then maybe one and a half years ago, we started moving into React and that's why we created the Eventbrite design system. It's a really nice project that probably could be open sourced. It's a library of components for our React components.

            With the help of that library, we are building our new stack with React and sometimes Redux when it's necessary.

            See more
            Postman logo

            Postman

            94.4K
            80.9K
            1.8K
            Only complete API development environment
            94.4K
            80.9K
            + 1
            1.8K
            PROS OF POSTMAN
            • 490
              Easy to use
            • 369
              Great tool
            • 276
              Makes developing rest api's easy peasy
            • 156
              Easy setup, looks good
            • 144
              The best api workflow out there
            • 53
              It's the best
            • 53
              History feature
            • 44
              Adds real value to my workflow
            • 43
              Great interface that magically predicts your needs
            • 35
              The best in class app
            • 12
              Can save and share script
            • 10
              Fully featured without looking cluttered
            • 8
              Collections
            • 8
              Option to run scrips
            • 8
              Global/Environment Variables
            • 7
              Shareable Collections
            • 7
              Dead simple and useful. Excellent
            • 7
              Dark theme easy on the eyes
            • 6
              Awesome customer support
            • 6
              Great integration with newman
            • 5
              Documentation
            • 5
              Simple
            • 5
              The test script is useful
            • 4
              Saves responses
            • 4
              This has simplified my testing significantly
            • 4
              Makes testing API's as easy as 1,2,3
            • 4
              Easy as pie
            • 3
              API-network
            • 3
              I'd recommend it to everyone who works with apis
            • 3
              Mocking API calls with predefined response
            • 2
              Now supports GraphQL
            • 2
              Postman Runner CI Integration
            • 2
              Easy to setup, test and provides test storage
            • 2
              Continuous integration using newman
            • 2
              Pre-request Script and Test attributes are invaluable
            • 2
              Runner
            • 2
              Graph
            • 1
              <a href="http://fixbit.com/">useful tool</a>
            CONS OF POSTMAN
            • 10
              Stores credentials in HTTP
            • 9
              Bloated features and UI
            • 8
              Cumbersome to switch authentication tokens
            • 7
              Poor GraphQL support
            • 5
              Expensive
            • 3
              Not free after 5 users
            • 3
              Can't prompt for per-request variables
            • 1
              Import swagger
            • 1
              Support websocket
            • 1
              Import curl

            related Postman posts

            Noah Zoschke
            Engineering Manager at Segment · | 30 upvotes · 2.9M views

            We just launched the Segment Config API (try it out for yourself here) — a set of public REST APIs that enable you to manage your Segment configuration. A public API is only as good as its #documentation. For the API reference doc we are using Postman.

            Postman is an “API development environment”. You download the desktop app, and build API requests by URL and payload. Over time you can build up a set of requests and organize them into a “Postman Collection”. You can generalize a collection with “collection variables”. This allows you to parameterize things like username, password and workspace_name so a user can fill their own values in before making an API call. This makes it possible to use Postman for one-off API tasks instead of writing code.

            Then you can add Markdown content to the entire collection, a folder of related methods, and/or every API method to explain how the APIs work. You can publish a collection and easily share it with a URL.

            This turns Postman from a personal #API utility to full-blown public interactive API documentation. The result is a great looking web page with all the API calls, docs and sample requests and responses in one place. Check out the results here.

            Postman’s powers don’t end here. You can automate Postman with “test scripts” and have it periodically run a collection scripts as “monitors”. We now have #QA around all the APIs in public docs to make sure they are always correct

            Along the way we tried other techniques for documenting APIs like ReadMe.io or Swagger UI. These required a lot of effort to customize.

            Writing and maintaining a Postman collection takes some work, but the resulting documentation site, interactivity and API testing tools are well worth it.

            See more
            Simon Reymann
            Senior Fullstack Developer at QUANTUSflow Software GmbH · | 27 upvotes · 5.1M views

            Our whole Node.js backend stack consists of the following tools:

            • Lerna as a tool for multi package and multi repository management
            • npm as package manager
            • NestJS as Node.js framework
            • TypeScript as programming language
            • ExpressJS as web server
            • Swagger UI for visualizing and interacting with the API’s resources
            • Postman as a tool for API development
            • TypeORM as object relational mapping layer
            • JSON Web Token for access token management

            The main reason we have chosen Node.js over PHP is related to the following artifacts:

            • Made for the web and widely in use: Node.js is a software platform for developing server-side network services. Well-known projects that rely on Node.js include the blogging software Ghost, the project management tool Trello and the operating system WebOS. Node.js requires the JavaScript runtime environment V8, which was specially developed by Google for the popular Chrome browser. This guarantees a very resource-saving architecture, which qualifies Node.js especially for the operation of a web server. Ryan Dahl, the developer of Node.js, released the first stable version on May 27, 2009. He developed Node.js out of dissatisfaction with the possibilities that JavaScript offered at the time. The basic functionality of Node.js has been mapped with JavaScript since the first version, which can be expanded with a large number of different modules. The current package managers (npm or Yarn) for Node.js know more than 1,000,000 of these modules.
            • Fast server-side solutions: Node.js adopts the JavaScript "event-loop" to create non-blocking I/O applications that conveniently serve simultaneous events. With the standard available asynchronous processing within JavaScript/TypeScript, highly scalable, server-side solutions can be realized. The efficient use of the CPU and the RAM is maximized and more simultaneous requests can be processed than with conventional multi-thread servers.
            • A language along the entire stack: Widely used frameworks such as React or AngularJS or Vue.js, which we prefer, are written in JavaScript/TypeScript. If Node.js is now used on the server side, you can use all the advantages of a uniform script language throughout the entire application development. The same language in the back- and frontend simplifies the maintenance of the application and also the coordination within the development team.
            • Flexibility: Node.js sets very few strict dependencies, rules and guidelines and thus grants a high degree of flexibility in application development. There are no strict conventions so that the appropriate architecture, design structures, modules and features can be freely selected for the development.
            See more