What is SQLAlchemy and what are its top alternatives?
SQLAlchemy is a popular Python SQL toolkit and Object-Relational Mapping (ORM) library that provides a powerful and flexible way to interact with databases. It allows developers to work with high-level ORM models as well as low-level SQL expressions, giving them the flexibility to choose the level of abstraction they need. SQLAlchemy supports a wide range of database systems and provides features like query building, schema creation, and transaction management. However, despite its flexibility and feature-rich nature, SQLAlchemy can have a steep learning curve for beginners and may be overkill for simple projects.
- Pony ORM: Pony ORM is a simpler and more intuitive alternative to SQLAlchemy with a focus on convenience and ease of use. It provides automatic schema generation, entity relationships, and query building capabilities like SQLAlchemy but in a more user-friendly way. Pros: Easy to learn and use; Cons: Limited database support.
- Peewee: Peewee is a lightweight ORM with a small footprint that aims to be simple, fast, and easy to use. It offers a similar feature set to SQLAlchemy but with a focus on performance and simplicity. Pros: Lightweight and fast; Cons: Lack of advanced features compared to SQLAlchemy.
- Django ORM: Django ORM is the built-in ORM system of the Django web framework, providing a seamless integration of database operations within Django applications. It offers a high-level ORM API that simplifies database interactions and includes features like model relationships, queries, and migrations. Pros: Great integration with Django; Cons: Limited standalone usage without Django.
- SQLObject: SQLObject is a simple ORM library that focuses on ease of use and minimal boilerplate code. It provides object-oriented interfaces for interacting with databases and supports various database backends. Pros: Simplicity and minimal setup; Cons: Limited documentation and community support.
- Tortoise-ORM: Tortoise-ORM is an async ORM inspired by Django ORM that supports asyncio and makes it easy to work with databases in asynchronous Python applications. It offers a familiar syntax for defining models and querying data asynchronously. Pros: Async support; Cons: Less mature than SQLAlchemy.
- Records: Records is a simple and high-performance library that provides a higher-level interface for working with databases in Python. It aims to simplify common database operations while maintaining performance. Pros: Lightweight and easy to use; Cons: Limited features compared to SQLAlchemy.
- Tornado-SQLAlchemy: Tornado-SQLAlchemy is an extension for integrating SQLAlchemy with the Tornado web framework, allowing developers to build asynchronous web applications with SQLAlchemy support. It provides seamless integration with Tornado's asynchronous capabilities. Pros: Integrates well with Tornado; Cons: Limited standalone usage outside of Tornado.
- Gino: Gino is an asyncio ORM built on top of SQLAlchemy core that aims to combine the power of SQLAlchemy with the flexibility of asynchronous programming in Python. It provides an easy way to work with databases in async applications. Pros: Async support; Cons: Less feature-rich than SQLAlchemy.
- SQLAlchemy-Utils: SQLAlchemy-Utils is a companion library to SQLAlchemy that provides various utility functions and data types for common database tasks. It adds extra functionality to SQLAlchemy models and queries, making them more powerful and versatile. Pros: Extends SQLAlchemy's capabilities; Cons: Adds complexity to projects.
- PeeWee-Async: PeeWee-Async is an asynchronous ORM built on top of the Peewee ORM library, adding support for asyncio and async/await syntax. It allows developers to work with databases in async applications using the familiar Peewee API. Pros: Async support; Cons: Limited in terms of features compared to SQLAlchemy.
Top Alternatives to SQLAlchemy
- Django
Django is a high-level Python Web framework that encourages rapid development and clean, pragmatic design. ...
- Pandas
Flexible and powerful data analysis / manipulation library for Python, providing labeled data structures similar to R data.frame objects, statistical functions, and much more. ...
- Entity Framework
It is an object-relational mapper that enables .NET developers to work with relational data using domain-specific objects. It eliminates the need for most of the data-access code that developers usually need to write. ...
- peewee
A small, expressive orm, written in python (2.6+, 3.2+), with built-in support for sqlite, mysql and postgresql and special extensions like hstore. ...
- MySQL
The MySQL software delivers a very fast, multi-threaded, multi-user, and robust SQL (Structured Query Language) database server. MySQL Server is intended for mission-critical, heavy-load production systems as well as for embedding into mass-deployed software. ...
- PostgreSQL
PostgreSQL is an advanced object-relational database management system that supports an extended subset of the SQL standard, including transactions, foreign keys, subqueries, triggers, user-defined types and functions. ...
- MongoDB
MongoDB stores data in JSON-like documents that can vary in structure, offering a dynamic, flexible schema. MongoDB was also designed for high availability and scalability, with built-in replication and auto-sharding. ...
- Redis
Redis is an open source (BSD licensed), in-memory data structure store, used as a database, cache, and message broker. Redis provides data structures such as strings, hashes, lists, sets, sorted sets with range queries, bitmaps, hyperloglogs, geospatial indexes, and streams. ...
SQLAlchemy alternatives & related posts
- Rapid development673
- Open source487
- Great community425
- Easy to learn379
- Mvc277
- Beautiful code232
- Elegant223
- Free207
- Great packages203
- Great libraries194
- Comes with auth and crud admin panel80
- Restful79
- Powerful78
- Great documentation76
- Great for web72
- Python57
- Great orm43
- Great for api41
- All included32
- Fast29
- Web Apps25
- Clean23
- Easy setup23
- Used by top startups21
- Sexy19
- ORM19
- The Django community15
- Allows for very rapid development with great libraries14
- Convention over configuration14
- King of backend world11
- Full stack10
- Great MVC and templating engine10
- Mvt8
- Fast prototyping8
- Its elegant and practical7
- Easy to develop end to end AI Models7
- Batteries included7
- Have not found anything that it can't do6
- Very quick to get something up and running6
- Cross-Platform6
- Zero code burden to change databases5
- Great peformance5
- Python community5
- Easy Structure , useful inbuilt library5
- Easy to use4
- Map4
- Easy to change database manager4
- Full-Text Search4
- Just the right level of abstraction4
- Many libraries4
- Modular4
- Easy4
- Scaffold3
- Node js1
- Built in common security1
- Great default admin panel1
- Scalable1
- Cons1
- Gigante ta1
- Fastapi1
- Rails0
- Underpowered templating26
- Autoreload restarts whole server22
- Underpowered ORM22
- URL dispatcher ignores HTTP method15
- Internal subcomponents coupling10
- Not nodejs8
- Configuration hell8
- Admin7
- Not as clean and nice documentation like Laravel5
- Python4
- Not typed3
- Bloated admin panel included3
- Overwhelming folder structure2
- InEffective Multithreading2
- Not type safe1
related Django posts
Simple controls over complex technologies, as we put it, wouldn't be possible without neat UIs for our user areas including start page, dashboard, settings, and docs.
Initially, there was Django. Back in 2011, considering our Python-centric approach, that was the best choice. Later, we realized we needed to iterate on our website more quickly. And this led us to detaching Django from our front end. That was when we decided to build an SPA.
For building user interfaces, we're currently using React as it provided the fastest rendering back when we were building our toolkit. It’s worth mentioning Uploadcare is not a front-end-focused SPA: we aren’t running at high levels of complexity. If it were, we’d go with Ember.js.
However, there's a chance we will shift to the faster Preact, with its motto of using as little code as possible, and because it makes more use of browser APIs. One of our future tasks for our front end is to configure our Webpack bundler to split up the code for different site sections. For styles, we use PostCSS along with its plugins such as cssnano which minifies all the code.
All that allows us to provide a great user experience and quickly implement changes where they are needed with as little code as possible.
Hey, so I developed a basic application with Python. But to use it, you need a python interpreter. I want to add a GUI to make it more appealing. What should I choose to develop a GUI? I have very basic skills in front end development (CSS, JavaScript). I am fluent in python. I'm looking for a tool that is easy to use and doesn't require too much code knowledge. I have recently tried out Flask, but it is kinda complicated. Should I stick with it, move to Django, or is there another nice framework to use?
Pandas
- Easy data frame management21
- Extensive file format compatibility2
related Pandas posts
Server side
We decided to use Python for our backend because it is one of the industry standard languages for data analysis and machine learning. It also has a lot of support due to its large user base.
Web Server: We chose Flask because we want to keep our machine learning / data analysis and the web server in the same language. Flask is easy to use and we all have experience with it. Postman will be used for creating and testing APIs due to its convenience.
Machine Learning: We decided to go with PyTorch for machine learning since it is one of the most popular libraries. It is also known to have an easier learning curve than other popular libraries such as Tensorflow. This is important because our team lacks ML experience and learning the tool as fast as possible would increase productivity.
Data Analysis: Some common Python libraries will be used to analyze our data. These include NumPy, Pandas , and matplotlib. These tools combined will help us learn the properties and characteristics of our data. Jupyter notebook will be used to help organize the data analysis process, and improve the code readability.
Client side
UI: We decided to use React for the UI because it helps organize the data and variables of the application into components, making it very convenient to maintain our dashboard. Since React is one of the most popular front end frameworks right now, there will be a lot of support for it as well as a lot of potential new hires that are familiar with the framework. CSS 3 and HTML5 will be used for the basic styling and structure of the web app, as they are the most widely used front end languages.
State Management: We decided to use Redux to manage the state of the application since it works naturally to React. Our team also already has experience working with Redux which gave it a slight edge over the other state management libraries.
Data Visualization: We decided to use the React-based library Victory to visualize the data. They have very user friendly documentation on their official website which we find easy to learn from.
Cache
- Caching: We decided between Redis and memcached because they are two of the most popular open-source cache engines. We ultimately decided to use Redis to improve our web app performance mainly due to the extra functionalities it provides such as fine-tuning cache contents and durability.
Database
- Database: We decided to use a NoSQL database over a relational database because of its flexibility from not having a predefined schema. The user behavior analytics has to be flexible since the data we plan to store may change frequently. We decided on MongoDB because it is lightweight and we can easily host the database with MongoDB Atlas . Everyone on our team also has experience working with MongoDB.
Infrastructure
- Deployment: We decided to use Heroku over AWS, Azure, Google Cloud because it is free. Although there are advantages to the other cloud services, Heroku makes the most sense to our team because our primary goal is to build an MVP.
Other Tools
Communication Slack will be used as the primary source of communication. It provides all the features needed for basic discussions. In terms of more interactive meetings, Zoom will be used for its video calls and screen sharing capabilities.
Source Control The project will be stored on GitHub and all code changes will be done though pull requests. This will help us keep the codebase clean and make it easy to revert changes when we need to.
Should I continue learning Django or take this Spring opportunity? I have been coding in python for about 2 years. I am currently learning Django and I am enjoying it. I also have some knowledge of data science libraries (Pandas, NumPy, scikit-learn, PyTorch). I am currently enhancing my web development and software engineering skills and may shift later into data science since I came from a medical background. The issue is that I am offered now a very trustworthy 9 months program teaching Java/Spring. The graduates of this program work directly in well know tech companies. Although I have been planning to continue with my Python, the other opportunity makes me hesitant since it will put me to work in a specific roadmap with deadlines and mentors. I also found on glassdoor that Spring jobs are way more than Django. Should I apply for this program or continue my journey?
Entity Framework
- LINQ6
- Object Oriented3
- Strongly Object-Oriented3
- Multiple approach (Model/Database/Code) first2
- Code first approach2
- Auto generated code1
- Model first approach1
- Strongly typed entities1
- Database first0
related Entity Framework posts
Hi Friends, I am planning to create a web and mobile app for eCommerce purposes, which is very similar to Swiggy.com/Zomato. Started this app and created API using .NET Core, Entity Framework, and Microsoft SQL Server as DB. Consuming this API in Flutter for mobile and web UI. Just want some help and suggestions about this selection. Worrying about the application's scalability and performance, please suggest me a good architecture to create this application, which may be used by more people over a period of time.
- Easy to start7
- Free4
- High Performance4
- Open Source4
related peewee posts
- Sql800
- Free679
- Easy562
- Widely used528
- Open source490
- High availability180
- Cross-platform support160
- Great community104
- Secure79
- Full-text indexing and searching75
- Fast, open, available26
- Reliable16
- SSL support16
- Robust15
- Enterprise Version9
- Easy to set up on all platforms7
- NoSQL access to JSON data type3
- Relational database1
- Easy, light, scalable1
- Sequel Pro (best SQL GUI)1
- Replica Support1
- Owned by a company with their own agenda16
- Can't roll back schema changes3
related MySQL posts
When I joined NYT there was already broad dissatisfaction with the LAMP (Linux Apache HTTP Server MySQL PHP) Stack and the front end framework, in particular. So, I wasn't passing judgment on it. I mean, LAMP's fine, you can do good work in LAMP. It's a little dated at this point, but it's not ... I didn't want to rip it out for its own sake, but everyone else was like, "We don't like this, it's really inflexible." And I remember from being outside the company when that was called MIT FIVE when it had launched. And been observing it from the outside, and I was like, you guys took so long to do that and you did it so carefully, and yet you're not happy with your decisions. Why is that? That was more the impetus. If we're going to do this again, how are we going to do it in a way that we're gonna get a better result?
So we're moving quickly away from LAMP, I would say. So, right now, the new front end is React based and using Apollo. And we've been in a long, protracted, gradual rollout of the core experiences.
React is now talking to GraphQL as a primary API. There's a Node.js back end, to the front end, which is mainly for server-side rendering, as well.
Behind there, the main repository for the GraphQL server is a big table repository, that we call Bodega because it's a convenience store. And that reads off of a Kafka pipeline.
We've been using PostgreSQL since the very early days of Zulip, but we actually didn't use it from the beginning. Zulip started out as a MySQL project back in 2012, because we'd heard it was a good choice for a startup with a wide community. However, we found that even though we were using the Django ORM for most of our database access, we spent a lot of time fighting with MySQL. Issues ranged from bad collation defaults, to bad query plans which required a lot of manual query tweaks.
We ended up getting so frustrated that we tried out PostgresQL, and the results were fantastic. We didn't have to do any real customization (just some tuning settings for how big a server we had), and all of our most important queries were faster out of the box. As a result, we were able to delete a bunch of custom queries escaping the ORM that we'd written to make the MySQL query planner happy (because postgres just did the right thing automatically).
And then after that, we've just gotten a ton of value out of postgres. We use its excellent built-in full-text search, which has helped us avoid needing to bring in a tool like Elasticsearch, and we've really enjoyed features like its partial indexes, which saved us a lot of work adding unnecessary extra tables to get good performance for things like our "unread messages" and "starred messages" indexes.
I can't recommend it highly enough.
- Relational database764
- High availability510
- Enterprise class database439
- Sql383
- Sql + nosql304
- Great community173
- Easy to setup147
- Heroku131
- Secure by default130
- Postgis113
- Supports Key-Value50
- Great JSON support48
- Cross platform34
- Extensible33
- Replication28
- Triggers26
- Multiversion concurrency control23
- Rollback23
- Open source21
- Heroku Add-on18
- Stable, Simple and Good Performance17
- Powerful15
- Lets be serious, what other SQL DB would you go for?13
- Good documentation11
- Scalable9
- Free8
- Reliable8
- Intelligent optimizer8
- Transactional DDL7
- Modern7
- One stop solution for all things sql no matter the os6
- Relational database with MVCC5
- Faster Development5
- Full-Text Search4
- Developer friendly4
- Excellent source code3
- Free version3
- Great DB for Transactional system or Application3
- Relational datanbase3
- search3
- Open-source3
- Text2
- Full-text2
- Can handle up to petabytes worth of size1
- Composability1
- Multiple procedural languages supported1
- Native0
- Table/index bloatings10
related PostgreSQL posts
Our whole DevOps stack consists of the following tools:
- GitHub (incl. GitHub Pages/Markdown for Documentation, GettingStarted and HowTo's) for collaborative review and code management tool
- Respectively Git as revision control system
- SourceTree as Git GUI
- Visual Studio Code as IDE
- CircleCI for continuous integration (automatize development process)
- Prettier / TSLint / ESLint as code linter
- SonarQube as quality gate
- Docker as container management (incl. Docker Compose for multi-container application management)
- VirtualBox for operating system simulation tests
- Kubernetes as cluster management for docker containers
- Heroku for deploying in test environments
- nginx as web server (preferably used as facade server in production environment)
- SSLMate (using OpenSSL) for certificate management
- Amazon EC2 (incl. Amazon S3) for deploying in stage (production-like) and production environments
- PostgreSQL as preferred database system
- Redis as preferred in-memory database/store (great for caching)
The main reason we have chosen Kubernetes over Docker Swarm is related to the following artifacts:
- Key features: Easy and flexible installation, Clear dashboard, Great scaling operations, Monitoring is an integral part, Great load balancing concepts, Monitors the condition and ensures compensation in the event of failure.
- Applications: An application can be deployed using a combination of pods, deployments, and services (or micro-services).
- Functionality: Kubernetes as a complex installation and setup process, but it not as limited as Docker Swarm.
- Monitoring: It supports multiple versions of logging and monitoring when the services are deployed within the cluster (Elasticsearch/Kibana (ELK), Heapster/Grafana, Sysdig cloud integration).
- Scalability: All-in-one framework for distributed systems.
- Other Benefits: Kubernetes is backed by the Cloud Native Computing Foundation (CNCF), huge community among container orchestration tools, it is an open source and modular tool that works with any OS.
Recently we were looking at a few robust and cost-effective ways of replicating the data that resides in our production MongoDB to a PostgreSQL database for data warehousing and business intelligence.
We set ourselves the following criteria for the optimal tool that would do this job: - The data replication must be near real-time, yet it should NOT impact the production database - The data replication must be horizontally scalable (based on the load), asynchronous & crash-resilient
Based on the above criteria, we selected the following tools to perform the end to end data replication:
We chose MongoDB Stitch for picking up the changes in the source database. It is the serverless platform from MongoDB. One of the services offered by MongoDB Stitch is Stitch Triggers. Using stitch triggers, you can execute a serverless function (in Node.js) in real time in response to changes in the database. When there are a lot of database changes, Stitch automatically "feeds forward" these changes through an asynchronous queue.
We chose Amazon SQS as the pipe / message backbone for communicating the changes from MongoDB to our own replication service. Interestingly enough, MongoDB stitch offers integration with AWS services.
In the Node.js function, we wrote minimal functionality to communicate the database changes (insert / update / delete / replace) to Amazon SQS.
Next we wrote a minimal micro-service in Python to listen to the message events on SQS, pickup the data payload & mirror the DB changes on to the target Data warehouse. We implemented source data to target data translation by modelling target table structures through SQLAlchemy . We deployed this micro-service as AWS Lambda with Zappa. With Zappa, deploying your services as event-driven & horizontally scalable Lambda service is dumb-easy.
In the end, we got to implement a highly scalable near realtime Change Data Replication service that "works" and deployed to production in a matter of few days!
- Document-oriented storage828
- No sql593
- Ease of use553
- Fast464
- High performance410
- Free255
- Open source218
- Flexible180
- Replication & high availability145
- Easy to maintain112
- Querying42
- Easy scalability39
- Auto-sharding38
- High availability37
- Map/reduce31
- Document database27
- Easy setup25
- Full index support25
- Reliable16
- Fast in-place updates15
- Agile programming, flexible, fast14
- No database migrations12
- Easy integration with Node.Js8
- Enterprise8
- Enterprise Support6
- Great NoSQL DB5
- Support for many languages through different drivers4
- Schemaless3
- Aggregation Framework3
- Drivers support is good3
- Fast2
- Managed service2
- Easy to Scale2
- Awesome2
- Consistent2
- Good GUI1
- Acid Compliant1
- Very slowly for connected models that require joins6
- Not acid compliant3
- Proprietary query language2
related MongoDB posts
Recently we were looking at a few robust and cost-effective ways of replicating the data that resides in our production MongoDB to a PostgreSQL database for data warehousing and business intelligence.
We set ourselves the following criteria for the optimal tool that would do this job: - The data replication must be near real-time, yet it should NOT impact the production database - The data replication must be horizontally scalable (based on the load), asynchronous & crash-resilient
Based on the above criteria, we selected the following tools to perform the end to end data replication:
We chose MongoDB Stitch for picking up the changes in the source database. It is the serverless platform from MongoDB. One of the services offered by MongoDB Stitch is Stitch Triggers. Using stitch triggers, you can execute a serverless function (in Node.js) in real time in response to changes in the database. When there are a lot of database changes, Stitch automatically "feeds forward" these changes through an asynchronous queue.
We chose Amazon SQS as the pipe / message backbone for communicating the changes from MongoDB to our own replication service. Interestingly enough, MongoDB stitch offers integration with AWS services.
In the Node.js function, we wrote minimal functionality to communicate the database changes (insert / update / delete / replace) to Amazon SQS.
Next we wrote a minimal micro-service in Python to listen to the message events on SQS, pickup the data payload & mirror the DB changes on to the target Data warehouse. We implemented source data to target data translation by modelling target table structures through SQLAlchemy . We deployed this micro-service as AWS Lambda with Zappa. With Zappa, deploying your services as event-driven & horizontally scalable Lambda service is dumb-easy.
In the end, we got to implement a highly scalable near realtime Change Data Replication service that "works" and deployed to production in a matter of few days!
We use MongoDB as our primary #datastore. Mongo's approach to replica sets enables some fantastic patterns for operations like maintenance, backups, and #ETL.
As we pull #microservices from our #monolith, we are taking the opportunity to build them with their own datastores using PostgreSQL. We also use Redis to cache data we’d never store permanently, and to rate-limit our requests to partners’ APIs (like GitHub).
When we’re dealing with large blobs of immutable data (logs, artifacts, and test results), we store them in Amazon S3. We handle any side-effects of S3’s eventual consistency model within our own code. This ensures that we deal with user requests correctly while writes are in process.
- Performance886
- Super fast542
- Ease of use513
- In-memory cache444
- Advanced key-value cache324
- Open source194
- Easy to deploy182
- Stable164
- Free155
- Fast121
- High-Performance42
- High Availability40
- Data Structures35
- Very Scalable32
- Replication24
- Great community22
- Pub/Sub22
- "NoSQL" key-value data store19
- Hashes16
- Sets13
- Sorted Sets11
- NoSQL10
- Lists10
- Async replication9
- BSD licensed9
- Bitmaps8
- Integrates super easy with Sidekiq for Rails background8
- Keys with a limited time-to-live7
- Open Source7
- Lua scripting6
- Strings6
- Awesomeness for Free5
- Hyperloglogs5
- Transactions4
- Outstanding performance4
- Runs server side LUA4
- LRU eviction of keys4
- Feature Rich4
- Written in ANSI C4
- Networked4
- Data structure server3
- Performance & ease of use3
- Dont save data if no subscribers are found2
- Automatic failover2
- Easy to use2
- Temporarily kept on disk2
- Scalable2
- Existing Laravel Integration2
- Channels concept2
- Object [key/value] size each 500 MB2
- Simple2
- Cannot query objects directly15
- No secondary indexes for non-numeric data types3
- No WAL1
related Redis posts
StackShare Feed is built entirely with React, Glamorous, and Apollo. One of our objectives with the public launch of the Feed was to enable a Server-side rendered (SSR) experience for our organic search traffic. When you visit the StackShare Feed, and you aren't logged in, you are delivered the Trending feed experience. We use an in-house Node.js rendering microservice to generate this HTML. This microservice needs to run and serve requests independent of our Rails web app. Up until recently, we had a mono-repo with our Rails and React code living happily together and all served from the same web process. In order to deploy our SSR app into a Heroku environment, we needed to split out our front-end application into a separate repo in GitHub. The driving factor in this decision was mostly due to limitations imposed by Heroku specifically with how processes can't communicate with each other. A new SSR app was created in Heroku and linked directly to the frontend repo so it stays in-sync with changes.
Related to this, we need a way to "deploy" our frontend changes to various server environments without building & releasing the entire Ruby application. We built a hybrid Amazon S3 Amazon CloudFront solution to host our Webpack bundles. A new CircleCI script builds the bundles and uploads them to S3. The final step in our rollout is to update some keys in Redis so our Rails app knows which bundles to serve. The result of these efforts were significant. Our frontend team now moves independently of our backend team, our build & release process takes only a few minutes, we are now using an edge CDN to serve JS assets, and we have pre-rendered React pages!
#StackDecisionsLaunch #SSR #Microservices #FrontEndRepoSplit
Our whole DevOps stack consists of the following tools:
- GitHub (incl. GitHub Pages/Markdown for Documentation, GettingStarted and HowTo's) for collaborative review and code management tool
- Respectively Git as revision control system
- SourceTree as Git GUI
- Visual Studio Code as IDE
- CircleCI for continuous integration (automatize development process)
- Prettier / TSLint / ESLint as code linter
- SonarQube as quality gate
- Docker as container management (incl. Docker Compose for multi-container application management)
- VirtualBox for operating system simulation tests
- Kubernetes as cluster management for docker containers
- Heroku for deploying in test environments
- nginx as web server (preferably used as facade server in production environment)
- SSLMate (using OpenSSL) for certificate management
- Amazon EC2 (incl. Amazon S3) for deploying in stage (production-like) and production environments
- PostgreSQL as preferred database system
- Redis as preferred in-memory database/store (great for caching)
The main reason we have chosen Kubernetes over Docker Swarm is related to the following artifacts:
- Key features: Easy and flexible installation, Clear dashboard, Great scaling operations, Monitoring is an integral part, Great load balancing concepts, Monitors the condition and ensures compensation in the event of failure.
- Applications: An application can be deployed using a combination of pods, deployments, and services (or micro-services).
- Functionality: Kubernetes as a complex installation and setup process, but it not as limited as Docker Swarm.
- Monitoring: It supports multiple versions of logging and monitoring when the services are deployed within the cluster (Elasticsearch/Kibana (ELK), Heapster/Grafana, Sysdig cloud integration).
- Scalability: All-in-one framework for distributed systems.
- Other Benefits: Kubernetes is backed by the Cloud Native Computing Foundation (CNCF), huge community among container orchestration tools, it is an open source and modular tool that works with any OS.