Need advice about which tool to choose?Ask the StackShare community!
Amazon SQS vs Azure Functions: What are the differences?
Developers describe Amazon SQS as "Fully managed message queuing service". Transmit any volume of data, at any level of throughput, without losing messages or requiring other services to be always available. With SQS, you can offload the administrative burden of operating and scaling a highly available messaging cluster, while paying a low price for only what you use. On the other hand, Azure Functions is detailed as "Listen and react to events across your stack". Azure Functions is an event driven, compute-on-demand experience that extends the existing Azure application platform with capabilities to implement code triggered by events occurring in virtually any Azure or 3rd party service as well as on-premises systems.
Amazon SQS can be classified as a tool in the "Message Queue" category, while Azure Functions is grouped under "Serverless / Task Processing".
Some of the features offered by Amazon SQS are:
- A queue can be created in any region.
- The message payload can contain up to 256KB of text in any format. Each 64KB ‘chunk’ of payload is billed as 1 request. For example, a single API call with a 256KB payload will be billed as four requests.
- Messages can be sent, received or deleted in batches of up to 10 messages or 256KB. Batches cost the same amount as single messages, meaning SQS can be even more cost effective for customers that use batching.
On the other hand, Azure Functions provides the following key features:
- Easily schedule event-driven tasks across services
- Expose Functions as HTTP API endpoints
- Scale Functions based on customer demand
"Easy to use, reliable" is the top reason why over 45 developers like Amazon SQS, while over 7 developers mention "Pay only when invoked" as the leading cause for choosing Azure Functions.
Medium, Lyft, and Coursera are some of the popular companies that use Amazon SQS, whereas Azure Functions is used by Property With Potential, OneWire, and Veris. Amazon SQS has a broader approval, being mentioned in 384 company stacks & 103 developers stacks; compared to Azure Functions, which is listed in 30 company stacks and 22 developer stacks.
Need advice on what platform, systems and tools to use.
Evaluating whether to start a new digital business for which we will need to build a website that handles all traffic. Website only right now. May add smartphone apps later. No desktop app will ever be added. Website to serve various countries and languages. B2B and B2C type customers. Need to handle heavy traffic, be low cost, and scale well.
We are open to either build it on AWS or on Microsoft Azure.
Apologies if I'm leaving out some info. My first post. :) Thanks in advance!
I recommend this : -Spring reactive for back end : the fact it's reactive (async) it consumes half of the resources that a sync platform needs (so less CPU -> less money). -Angular : Web Front end ; it's gives you the possibility to use PWA which is a cheap replacement for a mobile app (but more less popular). -Docker images. -Kubernetes to orchestrate all the containers. -I Use Jenkins / blueocean, ansible for my CI/CD (with Github of course) -AWS of course : u can run a K8S cluster there, make it multi AZ (availability zones) to be highly available, use a load balancer and an auto scaler and ur good to go. -You can store data by taking any managed DB or u can deploy ur own (cheap but risky).
You pay less money, but u need some technical 2 - 3 guys to make that done.
Good luck
My advice will be Front end: React Backend: Language: Java, Kotlin. Database: SQL: Postgres, MySQL, Aurora NOSQL: Mongo db. Caching: Redis. Public : Spring Webflux for async public facing operation. Admin api: Spring boot, Hibrernate, Rest API. Build Container image. Kuberenetes: AWS EKS, AWS ECS, Google GKE. Use Jenkins for CI/CD pipeline. Buddy works is good for AWS. Static content: Host on AWS S3 bucket, Use Cloudfront or Cloudflare as CDN.
Serverless Solution: Api gateway Lambda, Serveless Aurora (SQL). AWS S3 bucket.
Hi! I am creating a scraping system in Django, which involves long running tasks between 1 minute & 1 Day. As I am new to Message Brokers and Task Queues, I need advice on which architecture to use for my system. ( Amazon SQS, RabbitMQ, or Celery). The system should be autoscalable using Kubernetes(K8) based on the number of pending tasks in the queue.
Hello, i highly recommend Apache Kafka, to me it's the best. You can deploy it in cluster mode inside K8S, thus you can have a Highly available system (also auto scalable).
Good luck
Hi, we are in a ZMQ set up in a push/pull pattern, and we currently start to have more traffic and cases that the service is unavailable or stuck. We want to: * Not loose messages in services outages * Safely restart service without losing messages (ZeroMQ seems to need to close the socket in the receiver before restart manually)
Do you have experience with this setup with ZeroMQ? Would you suggest RabbitMQ or Amazon SQS (we are in AWS setup) instead? Something else?
Thank you for your time
ZeroMQ is fast but you need to build build reliability yourself. There are a number of patterns described in the zeromq guide. I have used RabbitMQ before which gives lot of functionality out of the box, you can probably use the worker queues
example from the tutorial, it can also persists messages in the queue.
I haven't used Amazon SQS before. Another tool you could use is Kafka.
Both would do the trick, but there are some nuances. We work with both.
From the sound of it, your main focus is "not losing messages". In that case, I would go with RabbitMQ with a high availability policy (ha-mode=all) and a main/retry/error queue pattern.
Push messages to an exchange, which sends them to the main queue. If an error occurs, push the errored out message to the retry exchange, which forwards it to the retry queue. Give the retry queue a x-message-ttl and set the main exchange as a dead-letter-exchange. If your message has been retried several times, push it to the error exchange, where the message can remain until someone has time to look at it.
This is a very useful and resilient pattern that allows you to never lose messages. With the high availability policy, you make sure that if one of your rabbitmq nodes dies, another can take over and messages are already mirrored to it.
This is not really possible with SQS, because SQS is a lot more focused on throughput and scaling. Combined with SNS it can do interesting things like deduplication of messages and such. That said, one thing core to its design is that messages have a maximum retention time. The idea is that a message that has stayed in an SQS queue for a while serves no more purpose after a while, so it gets removed - so as to not block up any listener resources for a long time. You can also set up a DLQ here, but these similarly do not hold onto messages forever. Since you seem to depend on messages surviving at all cost, I would suggest that the scaling/throughput benefit of SQS does not outweigh the difference in approach to messages there.
I want to schedule a message. Amazon SQS provides a delay of 15 minutes, but I want it in some hours.
Example: Let's say a Message1 is consumed by a consumer A but somehow it failed inside the consumer. I would want to put it in a queue and retry after 4hrs. Can I do this in Amazon MQ? I have seen in some Amazon MQ videos saying scheduling messages can be done. But, I'm not sure how.
Mithiridi, I believe you are talking about two different things. 1. If you need to process messages with delays of more 15m or at specific times, it's not a good idea to use queues, independently of tool SQM, Rabbit or Amazon MQ. you should considerer another approach using a scheduled job. 2. For dead queues and policy retries RabbitMQ, for example, doesn't support your use case. https://medium.com/@kiennguyen88/rabbitmq-delay-retry-schedule-with-dead-letter-exchange-31fb25a440fc I'm not sure if that is possible SNS/SQS support, they have a maximum delay for delivery (maxDelayTarget) in seconds but it's not clear the number. You can check this out: https://docs.aws.amazon.com/sns/latest/dg/sns-message-delivery-retries.html
Pros of Amazon SQS
- Easy to use, reliable62
- Low cost40
- Simple28
- Doesn't need to maintain it14
- It is Serverless8
- Has a max message size (currently 256K)4
- Triggers Lambda3
- Easy to configure with Terraform3
- Delayed delivery upto 15 mins only3
- Delayed delivery upto 12 hours3
- JMS compliant1
- Support for retry and dead letter queue1
- D1
Pros of Azure Functions
- Pay only when invoked14
- Great developer experience for C#11
- Multiple languages supported9
- Great debugging support7
- Can be used as lightweight https service5
- Easy scalability4
- WebHooks3
- Costo3
- Event driven2
- Azure component events for Storage, services etc2
- Poor developer experience for C#2
Sign up to add or upvote prosMake informed product decisions
Cons of Amazon SQS
- Has a max message size (currently 256K)2
- Proprietary2
- Difficult to configure2
- Has a maximum 15 minutes of delayed messages only1
Cons of Azure Functions
- No persistent (writable) file system available1
- Poor support for Linux environments1
- Sporadic server & language runtime issues1
- Not suited for long-running applications1