StackShareStackShare
Follow on
StackShare

Discover and share technology stacks from companies around the world.

Follow on

© 2025 StackShare. All rights reserved.

Product

  • Stacks
  • Tools
  • Feed

Company

  • About
  • Contact

Legal

  • Privacy Policy
  • Terms of Service
  1. Stackups
  2. Application & Data
  3. Databases
  4. Big Data Tools
  5. AWS Glue vs Apache Hive

AWS Glue vs Apache Hive

OverviewDecisionsComparisonAlternatives

Overview

Apache Hive
Apache Hive
Stacks487
Followers475
Votes0
GitHub Stars5.9K
Forks4.8K
AWS Glue
AWS Glue
Stacks461
Followers819
Votes9

AWS Glue vs Apache Hive: What are the differences?

AWS Glue and Apache Hive are popular tools used for big data processing. Let's explore the key differences between them.

  1. Data Processing Engine: AWS Glue is a fully managed, serverless extract, transform, and load (ETL) service provided by Amazon Web Services (AWS). It uses its own data processing engine called Apache Spark for executing ETL jobs. On the other hand, Apache Hive is a data warehouse infrastructure built on top of Hadoop, which uses MapReduce as its data processing engine.

  2. Ease of Use and Maintenance: AWS Glue is designed to be a fully managed service, which means AWS takes care of all the infrastructure and maintenance tasks. It provides an easy-to-use graphical interface for configuring and scheduling ETL jobs, as well as automatic data schema discovery. In contrast, Apache Hive requires manual setup and configuration of Hadoop and Hive clusters, making it more complex to deploy and maintain.

  3. Performance and Scalability: AWS Glue leverages the scalability and performance capabilities of the underlying Amazon S3 and Apache Spark services. It can process large volumes of data in parallel, making it highly scalable. Apache Hive, on the other hand, relies on Hadoop's MapReduce framework, which may not be as efficient for processing large datasets due to its batch-oriented nature.

  4. Data Catalog and Metadata Management: AWS Glue provides a centralized data catalog that automatically crawls, catalogs, and indexes metadata from various data sources. It allows users to define custom schemas and transformations, and provides a unified view of data across different storage systems. Apache Hive also provides a metastore for managing metadata, but it requires explicit schema definition and manual updates to the catalog.

  5. Integration with Ecosystem: AWS Glue seamlessly integrates with other AWS services, such as Amazon S3, Amazon Redshift, and Amazon Athena, enabling users to easily build end-to-end data processing pipelines in the AWS ecosystem. It also provides built-in integration with popular data integration tools like AWS Data Pipeline and AWS Glue DataBrew. Apache Hive, on the other hand, is part of the Apache Hadoop ecosystem and can interact with various components like HDFS, YARN, and HBase.

  6. Cost and Pricing Model: AWS Glue follows a pay-as-you-go pricing model, where users are charged based on the number of ETL jobs and the amount of data processed. It also incurs costs for data storage in Amazon S3. Apache Hive, being open source, is free to use, but it requires manual infrastructure provisioning and maintenance, which can incur additional costs in terms of hardware, software licenses, and administration.

In summary, AWS Glue is a fully managed extract, transform, and load (ETL) service that simplifies the process of building and managing data pipelines for analytics. In contrast, Apache Hive is an open-source data warehouse infrastructure built on top of Hadoop, offering SQL-like query capabilities and schema-on-read functionality for large-scale data processing. While AWS Glue offers a serverless and managed approach to data transformation with integration into the AWS ecosystem, Apache Hive provides a flexible and scalable solution for data warehousing within Hadoop environments.

Share your Stack

Help developers discover the tools you use. Get visibility for your team's tech choices and contribute to the community's knowledge.

View Docs
CLI (Node.js)
or
Manual

Advice on Apache Hive, AWS Glue

Ashish
Ashish

Tech Lead, Big Data Platform at Pinterest

Nov 27, 2019

Needs adviceonApache HiveApache HivePrestoPrestoAmazon EC2Amazon EC2

To provide employees with the critical need of interactive querying, we’ve worked with Presto, an open-source distributed SQL query engine, over the years. Operating Presto at Pinterest’s scale has involved resolving quite a few challenges like, supporting deeply nested and huge thrift schemas, slow/ bad worker detection and remediation, auto-scaling cluster, graceful cluster shutdown and impersonation support for ldap authenticator.

Our infrastructure is built on top of Amazon EC2 and we leverage Amazon S3 for storing our data. This separates compute and storage layers, and allows multiple compute clusters to share the S3 data.

We have hundreds of petabytes of data and tens of thousands of Apache Hive tables. Our Presto clusters are comprised of a fleet of 450 r4.8xl EC2 instances. Presto clusters together have over 100 TBs of memory and 14K vcpu cores. Within Pinterest, we have close to more than 1,000 monthly active users (out of total 1,600+ Pinterest employees) using Presto, who run about 400K queries on these clusters per month.

Each query submitted to Presto cluster is logged to a Kafka topic via Singer. Singer is a logging agent built at Pinterest and we talked about it in a previous post. Each query is logged when it is submitted and when it finishes. When a Presto cluster crashes, we will have query submitted events without corresponding query finished events. These events enable us to capture the effect of cluster crashes over time.

Each Presto cluster at Pinterest has workers on a mix of dedicated AWS EC2 instances and Kubernetes pods. Kubernetes platform provides us with the capability to add and remove workers from a Presto cluster very quickly. The best-case latency on bringing up a new worker on Kubernetes is less than a minute. However, when the Kubernetes cluster itself is out of resources and needs to scale up, it can take up to ten minutes. Some other advantages of deploying on Kubernetes platform is that our Presto deployment becomes agnostic of cloud vendor, instance types, OS, etc.

#BigData #AWS #DataScience #DataEngineering

3.72M views3.72M
Comments
Vamshi
Vamshi

Data Engineer at Tata Consultancy Services

May 29, 2020

Needs adviceonPySparkPySparkAzure Data FactoryAzure Data FactoryDatabricksDatabricks

I have to collect different data from multiple sources and store them in a single cloud location. Then perform cleaning and transforming using PySpark, and push the end results to other applications like reporting tools, etc. What would be the best solution? I can only think of Azure Data Factory + Databricks. Are there any alternatives to #AWS services + Databricks?

269k views269k
Comments
datocrats-org
datocrats-org

Jul 29, 2020

Needs adviceonAmazon EC2Amazon EC2TableauTableauPowerBIPowerBI

We need to perform ETL from several databases into a data warehouse or data lake. We want to

  • keep raw and transformed data available to users to draft their own queries efficiently
  • give users the ability to give custom permissions and SSO
  • move between open-source on-premises development and cloud-based production environments

We want to use inexpensive Amazon EC2 instances only on medium-sized data set 16GB to 32GB feeding into Tableau Server or PowerBI for reporting and data analysis purposes.

319k views319k
Comments

Detailed Comparison

Apache Hive
Apache Hive
AWS Glue
AWS Glue

Hive facilitates reading, writing, and managing large datasets residing in distributed storage using SQL. Structure can be projected onto data already in storage.

A fully managed extract, transform, and load (ETL) service that makes it easy for customers to prepare and load their data for analytics.

Built on top of Apache Hadoop; Tools to enable easy access to data via SQL; Support for extract/transform/load (ETL), reporting, and data analysis; Access to files stored either directly in Apache HDFS and HBase; Query execution using Apache Hadoop MapReduce, Tez or Spark frameworks
Easy - AWS Glue automates much of the effort in building, maintaining, and running ETL jobs. AWS Glue crawls your data sources, identifies data formats, and suggests schemas and transformations. AWS Glue automatically generates the code to execute your data transformations and loading processes.; Integrated - AWS Glue is integrated across a wide range of AWS services.; Serverless - AWS Glue is serverless. There is no infrastructure to provision or manage. AWS Glue handles provisioning, configuration, and scaling of the resources required to run your ETL jobs on a fully managed, scale-out Apache Spark environment. You pay only for the resources used while your jobs are running.; Developer Friendly - AWS Glue generates ETL code that is customizable, reusable, and portable, using familiar technology - Scala, Python, and Apache Spark. You can also import custom readers, writers and transformations into your Glue ETL code. Since the code AWS Glue generates is based on open frameworks, there is no lock-in. You can use it anywhere.
Statistics
GitHub Stars
5.9K
GitHub Stars
-
GitHub Forks
4.8K
GitHub Forks
-
Stacks
487
Stacks
461
Followers
475
Followers
819
Votes
0
Votes
9
Pros & Cons
No community feedback yet
Pros
  • 9
    Managed Hive Metastore
Integrations
Hadoop
Hadoop
Apache Spark
Apache Spark
HBase
HBase
Amazon Redshift
Amazon Redshift
Amazon S3
Amazon S3
Amazon RDS
Amazon RDS
Amazon Athena
Amazon Athena
MySQL
MySQL
Microsoft SQL Server
Microsoft SQL Server
Amazon EMR
Amazon EMR
Amazon Aurora
Amazon Aurora
Oracle
Oracle
Amazon RDS for PostgreSQL
Amazon RDS for PostgreSQL

What are some alternatives to Apache Hive, AWS Glue?

Apache Spark

Apache Spark

Spark is a fast and general processing engine compatible with Hadoop data. It can run in Hadoop clusters through YARN or Spark's standalone mode, and it can process data in HDFS, HBase, Cassandra, Hive, and any Hadoop InputFormat. It is designed to perform both batch processing (similar to MapReduce) and new workloads like streaming, interactive queries, and machine learning.

Presto

Presto

Distributed SQL Query Engine for Big Data

Amazon Athena

Amazon Athena

Amazon Athena is an interactive query service that makes it easy to analyze data in Amazon S3 using standard SQL. Athena is serverless, so there is no infrastructure to manage, and you pay only for the queries that you run.

Apache Flink

Apache Flink

Apache Flink is an open source system for fast and versatile data analytics in clusters. Flink supports batch and streaming analytics, in one system. Analytical programs can be written in concise and elegant APIs in Java and Scala.

lakeFS

lakeFS

It is an open-source data version control system for data lakes. It provides a “Git for data” platform enabling you to implement best practices from software engineering on your data lake, including branching and merging, CI/CD, and production-like dev/test environments.

Druid

Druid

Druid is a distributed, column-oriented, real-time analytics data store that is commonly used to power exploratory dashboards in multi-tenant environments. Druid excels as a data warehousing solution for fast aggregate queries on petabyte sized data sets. Druid supports a variety of flexible filters, exact calculations, approximate algorithms, and other useful calculations.

Apache Kylin

Apache Kylin

Apache Kylin™ is an open source Distributed Analytics Engine designed to provide SQL interface and multi-dimensional analysis (OLAP) on Hadoop/Spark supporting extremely large datasets, originally contributed from eBay Inc.

Splunk

Splunk

It provides the leading platform for Operational Intelligence. Customers use it to search, monitor, analyze and visualize machine data.

Apache Impala

Apache Impala

Impala is a modern, open source, MPP SQL query engine for Apache Hadoop. Impala is shipped by Cloudera, MapR, and Amazon. With Impala, you can query data, whether stored in HDFS or Apache HBase – including SELECT, JOIN, and aggregate functions – in real time.

Vertica

Vertica

It provides a best-in-class, unified analytics platform that will forever be independent from underlying infrastructure.

Related Comparisons

Bootstrap
Materialize

Bootstrap vs Materialize

Laravel
Django

Django vs Laravel vs Node.js

Bootstrap
Foundation

Bootstrap vs Foundation vs Material UI

Node.js
Spring Boot

Node.js vs Spring-Boot

Liquibase
Flyway

Flyway vs Liquibase